Conversion of cysteine to formylglycine in eukaryotic sulfatases occurs by a common mechanism in the endoplasmic reticulum

Dierks T, Lecca MR, Schmidt B, Figura von K (1998)
FEBS LETTERS 423(1): 61-65.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Dierks, ThomasUniBi; Lecca, MR; Schmidt, B; Figura von, K
Abstract / Bemerkung
Sulfatases undergo an unusual protein modification leading to conversion of a specific cysteine residue into alpha-formylglycine. This conversion is essential for catalytic activity. In arylsulfatase A the alpha-formylglycine is generated inside the endoplasmic reticulum at a]ate stage of protein translocation. Using in vitro translation in the presence of transport-competent microsomes we found that arylsulfatase B is also modified in a similar way by the formylglycine-generating machinery. Modification depended on protein transport and on the correct position of the relevant cysteine. Arylsulfatase A and B did not compete for modification, as became apparent in co-expression experiments. This could argue for an association of the modification machinery with the protein translocation apparatus. (C) 1998 Federation of European Biochemical Societies.
Erscheinungsjahr
1998
Zeitschriftentitel
FEBS LETTERS
Band
423
Ausgabe
1
Seite(n)
61-65
ISSN
0014-5793
Page URI
https://pub.uni-bielefeld.de/record/2350884

Zitieren

Dierks T, Lecca MR, Schmidt B, Figura von K. Conversion of cysteine to formylglycine in eukaryotic sulfatases occurs by a common mechanism in the endoplasmic reticulum. FEBS LETTERS. 1998;423(1):61-65.
Dierks, T., Lecca, M. R., Schmidt, B., & Figura von, K. (1998). Conversion of cysteine to formylglycine in eukaryotic sulfatases occurs by a common mechanism in the endoplasmic reticulum. FEBS LETTERS, 423(1), 61-65. https://doi.org/10.1016/S0014-5793(98)00065-9
Dierks, Thomas, Lecca, MR, Schmidt, B, and Figura von, K. 1998. “Conversion of cysteine to formylglycine in eukaryotic sulfatases occurs by a common mechanism in the endoplasmic reticulum”. FEBS LETTERS 423 (1): 61-65.
Dierks, T., Lecca, M. R., Schmidt, B., and Figura von, K. (1998). Conversion of cysteine to formylglycine in eukaryotic sulfatases occurs by a common mechanism in the endoplasmic reticulum. FEBS LETTERS 423, 61-65.
Dierks, T., et al., 1998. Conversion of cysteine to formylglycine in eukaryotic sulfatases occurs by a common mechanism in the endoplasmic reticulum. FEBS LETTERS, 423(1), p 61-65.
T. Dierks, et al., “Conversion of cysteine to formylglycine in eukaryotic sulfatases occurs by a common mechanism in the endoplasmic reticulum”, FEBS LETTERS, vol. 423, 1998, pp. 61-65.
Dierks, T., Lecca, M.R., Schmidt, B., Figura von, K.: Conversion of cysteine to formylglycine in eukaryotic sulfatases occurs by a common mechanism in the endoplasmic reticulum. FEBS LETTERS. 423, 61-65 (1998).
Dierks, Thomas, Lecca, MR, Schmidt, B, and Figura von, K. “Conversion of cysteine to formylglycine in eukaryotic sulfatases occurs by a common mechanism in the endoplasmic reticulum”. FEBS LETTERS 423.1 (1998): 61-65.

19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Asymmetric synthesis of propargylamines as amino acid surrogates in peptidomimetics.
Wünsch M, Schröder D, Fröhr T, Teichmann L, Hedwig S, Janson N, Belu C, Simon J, Heidemeyer S, Holtkamp P, Rudlof J, Klemme L, Hinzmann A, Neumann B, Stammler HG, Sewald N., Beilstein J Org Chem 13(), 2017
PMID: 29234470
Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction.
Peng J, Alam S, Radhakrishnan K, Mariappan M, Rudolph MG, May C, Dierks T, von Figura K, Schmidt B., FEBS J 282(17), 2015
PMID: 26077311
A biochemical and physicochemical comparison of two recombinant enzymes used for enzyme replacement therapies of hunter syndrome.
Chung YK, Sohn YB, Sohn JM, Lee J, Chang MS, Kwun Y, Kim CH, Lee JY, Yook YJ, Ko AR, Jin DK., Glycoconj J 31(4), 2014
PMID: 24781369
Arylsulfatase B improves locomotor function after mouse spinal cord injury.
Yoo M, Khaled M, Gibbs KM, Kim J, Kowalewski B, Dierks T, Schachner M., PLoS One 8(3), 2013
PMID: 23520469
Low-scale expression and purification of an active putative iduronate 2-sulfate sulfatase-Like enzyme from Escherichia coli K12.
Morales-Álvarez ED, Rivera-Hoyos CM, Baena-Moncada AM, Landázuri P, Poutou-Piñales RA, Sáenz-Suárez H, Barrera LA, Echeverri-Peña OY., J Microbiol 51(2), 2013
PMID: 23625223
A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme.
Roeser D, Preusser-Kunze A, Schmidt B, Gasow K, Wittmann JG, Dierks T, von Figura K, Rudolph MG., Proc Natl Acad Sci U S A 103(1), 2006
PMID: 16368756
Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme.
Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, Ficner R, Rudolph MG., Cell 121(4), 2005
PMID: 15907468
Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship.
Sardiello M, Annunziata I, Roma G, Ballabio A., Hum Mol Genet 14(21), 2005
PMID: 16174644
Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility.
Hanson SR, Best MD, Wong CH., Angew Chem Int Ed Engl 43(43), 2004
PMID: 15493058
Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme.
Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M, von Figura K., Cell 113(4), 2003
PMID: 12757705
Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases.
Dierks T, Lecca MR, Schlotterhose P, Schmidt B, von Figura K., EMBO J 18(8), 1999
PMID: 10205163
A novel protein modification generating an aldehyde group in sulfatases: its role in catalysis and disease.
von Figura K, Schmidt B, Selmer T, Dierks T., Bioessays 20(6), 1998
PMID: 9699462

18 References

Daten bereitgestellt von Europe PubMed Central.

A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency.
Schmidt B, Selmer T, Ingendoh A, von Figura K., Cell 82(2), 1995
PMID: 7628016

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Structure of a human lysosomal sulfatase.
Bond CS, Clements PR, Ashby SJ, Collyer CA, Harrop SJ, Hopwood JJ, Guss JM., Structure 5(2), 1997
PMID: 9032078

AUTHOR UNKNOWN, 0
Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum.
Dierks T, Schmidt B, von Figura K., Proc. Natl. Acad. Sci. U.S.A. 94(22), 1997
PMID: 9342345
A cluster of sulfatase genes on Xp22.3: mutations in chondrodysplasia punctata (CDPX) and implications for warfarin embryopathy.
Franco B, Meroni G, Parenti G, Levilliers J, Bernard L, Gebbia M, Cox L, Maroteaux P, Sheffield L, Rappold GA, Andria G, Petit C, Ballabio A., Cell 81(1), 1995
PMID: 7720070
Phylogenetic conservation of arylsulfatases. cDNA cloning and expression of human arylsulfatase B.
Peters C, Schmidt B, Rommerskirch W, Rupp K, Zuhlsdorf M, Vingron M, Meyer HE, Pohlmann R, von Figura K., J. Biol. Chem. 265(6), 1990
PMID: 2303452
Human N-acetylgalactosamine-4-sulphate sulphatase. Purification, monoclonal antibody production and native and subunit Mr values.
Gibson GJ, Saccone GT, Brooks DA, Clements PR, Hopwood JJ., Biochem. J. 248(3), 1987
PMID: 3435483
Components and proteolytic processing sites of arylsulfatase B from human placenta.
Kobayashi T, Honke K, Jin T, Gasa S, Miyazaki T, Makita A., Biochim. Biophys. Acta 1159(3), 1992
PMID: 1390929
A microsomal ATP-binding protein involved in efficient protein transport into the mammalian endoplasmic reticulum.
Dierks T, Volkmer J, Schlenstedt G, Jung C, Sandholzer U, Zachmann K, Schlotterhose P, Neifer K, Schmidt B, Zimmermann R., EMBO J. 15(24), 1996
PMID: 9003769
Synthesis and stability of arylsulfatase A and B in fibroblasts from multiple sulfatase deficiency.
Steckel F, Hasilik A, von Figura K., Eur. J. Biochem. 151(1), 1985
PMID: 2863138
Biochemical variability of arylsulphatases -A, -B and -C in cultured fibroblasts from patients with multiple sulphatase deficiency.
Chang PL, Rosa NE, Ballantyne SR, Davidson RG., J. Inherit. Metab. Dis. 6(4), 1983
PMID: 6142143
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 9506842
PubMed | Europe PMC

Suchen in

Google Scholar