Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine

Dierks T, Miech C, Hummerjohann J, Schmidt B, Kertesz MA, Figura von K (1998)
JOURNAL OF BIOLOGICAL CHEMISTRY 273(40): 25560-25564.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Dierks, ThomasUniBi; Miech, C; Hummerjohann, J; Schmidt, B; Kertesz, MA; Figura von, K
Abstract / Bemerkung
Eukaryotic sulfatases carry an alpha-formylglycine residue that is essential for activity and is located within the catalytic site. This formylglycine is generated by posttranslational modification of a conserved cysteine residue. The arylsulfatase gene of Pseudomonas aeruginosa also encodes a cysteine at the critical position. This protein could be expressed in active form in a sulfatase-deficient strain of P. aeruginosa, thereby restoring growth on aromatic sulfates as sole sulfur source, and in Escherichia coli, Analysis of the mature protein expressed in E. coli revealed the presence of formylglycine at the expected position, showing that the cysteine is also converted to formylglycine in a prokaryotic sulfatase. Substituting the relevant cysteine by a serine codon in the P. aeruginosa gene led to expression of inactive sulfatase protein, lacking the formylglycine. The machinery catalyzing the modification of the Pseudomonas sulfatase in E. coli therefore resembles the eukaryotic machinery, accepting cysteine but not serine as a modification substrate, By contrast, in the arylsulfatase of Klebsiella pneumoniae a formylglycine is found generated by modification of a serine residue. The expression of both the Klebsiella and the Pseudomonas sulfatases as active enzymes in E. coli suggests that two modification systems are present, or that a common modification system is modulated by a cofactor.
Erscheinungsjahr
1998
Zeitschriftentitel
JOURNAL OF BIOLOGICAL CHEMISTRY
Band
273
Ausgabe
40
Seite(n)
25560-25564
ISSN
0021-9258
Page URI
https://pub.uni-bielefeld.de/record/2350847

Zitieren

Dierks T, Miech C, Hummerjohann J, Schmidt B, Kertesz MA, Figura von K. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. JOURNAL OF BIOLOGICAL CHEMISTRY. 1998;273(40):25560-25564.
Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz, M. A., & Figura von, K. (1998). Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. JOURNAL OF BIOLOGICAL CHEMISTRY, 273(40), 25560-25564. doi:10.1074/jbc.273.40.25560
Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz, M. A., and Figura von, K. (1998). Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. JOURNAL OF BIOLOGICAL CHEMISTRY 273, 25560-25564.
Dierks, T., et al., 1998. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. JOURNAL OF BIOLOGICAL CHEMISTRY, 273(40), p 25560-25564.
T. Dierks, et al., “Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine”, JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 273, 1998, pp. 25560-25564.
Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz, M.A., Figura von, K.: Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. JOURNAL OF BIOLOGICAL CHEMISTRY. 273, 25560-25564 (1998).
Dierks, Thomas, Miech, C, Hummerjohann, J, Schmidt, B, Kertesz, MA, and Figura von, K. “Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine”. JOURNAL OF BIOLOGICAL CHEMISTRY 273.40 (1998): 25560-25564.

50 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Anaerobic Degradation of Sulfated Polysaccharides by Two Novel Kiritimatiellales Strains Isolated From Black Sea Sediment.
van Vliet DM, Palakawong Na Ayudthaya S, Diop S, Villanueva L, Stams AJM, Sánchez-Andrea I., Front Microbiol 10(), 2019
PMID: 30833937
Identification and Signature Sequences of Bacterial Δ4,5Hexuronate-2-O-Sulfatases.
Wang S, Guan J, Zhang Q, Chen X, Li F., Front Microbiol 10(), 2019
PMID: 31024490
A natural variant of arylsulfatase from Kluyveromyces lactis shows no formylglycine modification and has no enzyme activity.
Stressler T, Reichenberger K, Glück C, Leptihn S, Pfannstiel J, Swietalski P, Kuhn A, Seitl I, Fischer L., Appl Microbiol Biotechnol 102(6), 2018
PMID: 29450617
Evolutionary repurposing of a sulfatase: A new Michaelis complex leads to efficient transition state charge offset.
Miton CM, Jonas S, Fischer G, Duarte F, Mohamed MF, van Loo B, Kintses B, Kamerlin SCL, Tokuriki N, Hyvönen M, Hollfelder F., Proc Natl Acad Sci U S A 115(31), 2018
PMID: 30012610
How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans.
Cartmell A, Lowe EC, Baslé A, Firbank SJ, Ndeh DA, Murray H, Terrapon N, Lombard V, Henrissat B, Turnbull JE, Czjzek M, Gilbert HJ, Bolam DN., Proc Natl Acad Sci U S A 114(27), 2017
PMID: 28630303
Direct site-specific immobilization of protein A via aldehyde-hydrazide conjugation.
Zang B, Ren J, Xu L, Jia L., J Chromatogr B Analyt Technol Biomed Life Sci 1008(), 2016
PMID: 26655104
Enzyme-Assisted Preparation of Furcellaran-Like κ-/β-Carrageenan.
Préchoux A, Genicot S, Rogniaux H, Helbert W., Mar Biotechnol (NY) 18(1), 2016
PMID: 26585588
Chondroitin sulfate/dermatan sulfate sulfatases from mammals and bacteria.
Wang S, Sugahara K, Li F., Glycoconj J 33(6), 2016
PMID: 27526113
Detection, production, and application of microbial arylsulfatases.
Stressler T, Seitl I, Kuhn A, Fischer L., Appl Microbiol Biotechnol 100(21), 2016
PMID: 27654655
In Silico Analysis of the Metabolic Potential and Niche Specialization of Candidate Phylum "Latescibacteria" (WS3).
Youssef NH, Farag IF, Rinke C, Hallam SJ, Woyke T, Elshahed MS., PLoS One 10(6), 2015
PMID: 26039074
The Regulation of Steroid Action by Sulfation and Desulfation.
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA., Endocr Rev 36(5), 2015
PMID: 26213785
Profile of secreted hydrolases, associated proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the degradation of hemicellulose.
Currie DH, Guss AM, Herring CD, Giannone RJ, Johnson CM, Lankford PK, Brown SD, Hettich RL, Lynd LR., Appl Environ Microbiol 80(16), 2014
PMID: 24907337
Low-scale expression and purification of an active putative iduronate 2-sulfate sulfatase-Like enzyme from Escherichia coli K12.
Morales-Álvarez ED, Rivera-Hoyos CM, Baena-Moncada AM, Landázuri P, Poutou-Piñales RA, Sáenz-Suárez H, Barrera LA, Echeverri-Peña OY., J Microbiol 51(2), 2013
PMID: 23625223
Modeling catalytic promiscuity in the alkaline phosphatase superfamily.
Duarte F, Amrein BA, Kamerlin SC., Phys Chem Chem Phys 15(27), 2013
PMID: 23728154
Site-specific chemical protein conjugation using genetically encoded aldehyde tags.
Rabuka D, Rush JS, deHart GW, Wu P, Bertozzi CR., Nat Protoc 7(6), 2012
PMID: 22576105
Bioluminescent probes of sulfatase activity.
Rush JS, Beatty KE, Bertozzi CR., Chembiochem 11(15), 2010
PMID: 20872389
Recent N-atom containing compounds from indo-pacific invertebrates.
Kashman Y, Bishara A, Aknin M., Mar Drugs 8(11), 2010
PMID: 21139846
Efficient catalytic promiscuity for chemically distinct reactions.
Babtie AC, Bandyopadhyay S, Olguin LF, Hollfelder F., Angew Chem Int Ed Engl 48(20), 2009
PMID: 19373810
Heparin/heparan sulfate N-sulfamidase from Flavobacterium heparinum: structural and biochemical investigation of catalytic nitrogen-sulfur bond cleavage.
Myette JR, Soundararajan V, Behr J, Shriver Z, Raman R, Sasisekharan R., J Biol Chem 284(50), 2009
PMID: 19726673
Interaction of arylsulfatase-A (ASA) with its natural sulfoglycolipid substrates: a computational and site-directed mutagenesis study.
Schenk M, Koppisetty CA, Santos DC, Carmona E, Bhatia S, Nyholm PG, Tanphaichitr N., Glycoconj J 26(8), 2009
PMID: 19381802
Paralog of the formylglycine-generating enzyme--retention in the endoplasmic reticulum by canonical and noncanonical signals.
Gande SL, Mariappan M, Schmidt B, Pringle TH, von Figura K, Dierks T., FEBS J 275(6), 2008
PMID: 18266766
In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S] clusters.
Grove TL, Lee KH, St Clair J, Krebs C, Booker SJ., Biochemistry 47(28), 2008
PMID: 18558715
Introducing genetically encoded aldehydes into proteins.
Carrico IS, Carlson BL, Bertozzi CR., Nat Chem Biol 3(6), 2007
PMID: 17450134
Purification and characterization of the recombinant arylsulfatase cloned from Pseudoalteromonas carrageenovora.
Kim DE, Kim KH, Bae YJ, Lee JH, Jang YH, Nam SW., Protein Expr Purif 39(1), 2005
PMID: 15596366
Analysis of normal and mutant iduronate-2-sulphatase conformation.
Parkinson-Lawrence E, Turner C, Hopwood J, Brooks D., Biochem J 386(pt 2), 2005
PMID: 15500445
Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme.
Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, Ficner R, Rudolph MG., Cell 121(4), 2005
PMID: 15907468
Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship.
Sardiello M, Annunziata I, Roma G, Ballabio A., Hum Mol Genet 14(21), 2005
PMID: 16174644
Highly enantioselective sec-alkyl sulfatase activity of the marine planctomycete Rhodopirellula baltica shows retention of configuration.
Wallner SR, Bauer M, Würdemann C, Wecker P, Glöckner FO, Faber K., Angew Chem Int Ed Engl 44(39), 2005
PMID: 16161167
Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme.
Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M, von Figura K., Cell 113(4), 2003
PMID: 12757705
The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases.
Cosma MP, Pepe S, Annunziata I, Newbold RF, Grompe M, Parenti G, Ballabio A., Cell 113(4), 2003
PMID: 12757706
Bacterial transporters for sulfate and organosulfur compounds.
Kertesz MA., Res Microbiol 152(3-4), 2001
PMID: 11421275
1.3 A structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family.
Boltes I, Czapinska H, Kahnert A, von Bülow R, Dierks T, Schmidt B, von Figura K, Kertesz MA, Usón I., Structure 9(6), 2001
PMID: 11435113
The sulfur-regulated arylsulfatase gene cluster of Pseudomonas aeruginosa, a new member of the cys regulon.
Hummerjohann J, Laudenbach S, Rétey J, Leisinger T, Kertesz MA., J Bacteriol 182(7), 2000
PMID: 10715018
The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313.
Kahnert A, Vermeij P, Wietek C, James P, Leisinger T, Kertesz MA., J Bacteriol 182(10), 2000
PMID: 10781557
Escherichia coli K1 aslA contributes to invasion of brain microvascular endothelial cells in vitro and in vivo.
Hoffman JA, Badger JL, Zhang Y, Huang SH, Kim KS., Infect Immun 68(9), 2000
PMID: 10948126
Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases.
Dierks T, Lecca MR, Schlotterhose P, Schmidt B, von Figura K., EMBO J 18(8), 1999
PMID: 10205163

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 9748219
PubMed | Europe PMC

Suchen in

Google Scholar