The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase

Szameit C, Miech C, Balleininger M, Schmidt B, Figura von K, Dierks T (1999)
JOURNAL OF BIOLOGICAL CHEMISTRY 274(22): 15375-15381.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Szameit, C; Miech, C; Balleininger, M; Schmidt, B; Figura von, K; Dierks, ThomasUniBi
Abstract / Bemerkung
The catalytic residue of eukaryotic and prokaryotic sulfatases is a alpha-formylglycine. In the sulfatase of Klebsiella pneumoniae the formylglycine is generated by posttranslational oxidation of serine 72, We cloned the atsBA operon of K. pneumoniae and found that the sulfatase was expressed in inactive form in Escherichia coli transformed with the structural gene (atsA), Coexpression of the atsB gene, however, led to production of high sulfatase activity, indicating that the atsB gene product plays a posttranslational role that is essential for the sulfatase to gain its catalytic activity. This was verified after purification of the sulfatase from the periplasm of the cells. Peptide analysis of the protein expressed in the presence of AtsB revealed that half of the polypeptides carried the formylglycine at position 72, while the remaining polypeptides carried the encoded serine. The inactive sulfatase expressed in the absence of AtsB carried exclusively serine 72, demonstrating that the atsB gene is required for formylglycine modification. This gene encodes a 395-amino acid residue iron sulfur protein that has a cytosolic localization and is supposed to directly or indirectly catalyze the oxidation of the serine to formylglycine.
Erscheinungsjahr
1999
Zeitschriftentitel
JOURNAL OF BIOLOGICAL CHEMISTRY
Band
274
Ausgabe
22
Seite(n)
15375-15381
ISSN
0021-9258
Page URI
https://pub.uni-bielefeld.de/record/2350818

Zitieren

Szameit C, Miech C, Balleininger M, Schmidt B, Figura von K, Dierks T. The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase. JOURNAL OF BIOLOGICAL CHEMISTRY. 1999;274(22):15375-15381.
Szameit, C., Miech, C., Balleininger, M., Schmidt, B., Figura von, K., & Dierks, T. (1999). The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase. JOURNAL OF BIOLOGICAL CHEMISTRY, 274(22), 15375-15381. https://doi.org/10.1074/jbc.274.22.15375
Szameit, C, Miech, C, Balleininger, M, Schmidt, B, Figura von, K, and Dierks, Thomas. 1999. “The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase”. JOURNAL OF BIOLOGICAL CHEMISTRY 274 (22): 15375-15381.
Szameit, C., Miech, C., Balleininger, M., Schmidt, B., Figura von, K., and Dierks, T. (1999). The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase. JOURNAL OF BIOLOGICAL CHEMISTRY 274, 15375-15381.
Szameit, C., et al., 1999. The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase. JOURNAL OF BIOLOGICAL CHEMISTRY, 274(22), p 15375-15381.
C. Szameit, et al., “The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase”, JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 274, 1999, pp. 15375-15381.
Szameit, C., Miech, C., Balleininger, M., Schmidt, B., Figura von, K., Dierks, T.: The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase. JOURNAL OF BIOLOGICAL CHEMISTRY. 274, 15375-15381 (1999).
Szameit, C, Miech, C, Balleininger, M, Schmidt, B, Figura von, K, and Dierks, Thomas. “The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase”. JOURNAL OF BIOLOGICAL CHEMISTRY 274.22 (1999): 15375-15381.

40 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Two-fold Bioorthogonal Derivatization by Different Formylglycine-Generating Enzymes.
Krüger T, Weiland S, Falck G, Gerlach M, Boschanski M, Alam S, Müller KM, Dierks T, Sewald N., Angew Chem Int Ed Engl 57(24), 2018
PMID: 29579347
Chondroitin sulfate/dermatan sulfate sulfatases from mammals and bacteria.
Wang S, Sugahara K, Li F., Glycoconj J 33(6), 2016
PMID: 27526113
Matching the Diversity of Sulfated Biomolecules: Creation of a Classification Database for Sulfatases Reflecting Their Substrate Specificity.
Barbeyron T, Brillet-Guéguen L, Carré W, Carrière C, Caron C, Czjzek M, Hoebeke M, Michel G., PLoS One 11(10), 2016
PMID: 27749924
Glycosulfatase-Encoding Gene Cluster in Bifidobacterium breve UCC2003.
Egan M, Jiang H, O'Connell Motherway M, Oscarson S, van Sinderen D., Appl Environ Microbiol 82(22), 2016
PMID: 27590817
Mechanistic studies of the radical S-adenosylmethionine enzyme DesII with TDP-D-fucose.
Ko Y, Ruszczycky MW, Choi SH, Liu HW., Angew Chem Int Ed Engl 54(3), 2015
PMID: 25418063
Mechanistic Enzymology of the Radical SAM Enzyme DesII.
Ruszczycky MW, Liu HW., Isr J Chem 55(3-4), 2015
PMID: 27635101
Radical S-adenosylmethionine enzymes.
Broderick JB, Duffus BR, Duschene KS, Shepard EM., Chem Rev 114(8), 2014
PMID: 24476342
Low-scale expression and purification of an active putative iduronate 2-sulfate sulfatase-Like enzyme from Escherichia coli K12.
Morales-Álvarez ED, Rivera-Hoyos CM, Baena-Moncada AM, Landázuri P, Poutou-Piñales RA, Sáenz-Suárez H, Barrera LA, Echeverri-Peña OY., J Microbiol 51(2), 2013
PMID: 23625223
Evaluation of sulfatase-directed quinone methide traps for proteomics.
Lenger J, Schröder M, Ennemann EC, Müller B, Wong CH, Noll T, Dierks T, Hanson SR, Sewald N., Bioorg Med Chem 20(2), 2012
PMID: 21570853
Radical SAM enzymes in the biosynthesis of sugar-containing natural products.
Ruszczycky MW, Ogasawara Y, Liu HW., Biochim Biophys Acta 1824(11), 2012
PMID: 22172915
A consensus mechanism for Radical SAM-dependent dehydrogenation? BtrN contains two [4Fe-4S] clusters.
Grove TL, Ahlum JH, Sharma P, Krebs C, Booker SJ., Biochemistry 49(18), 2010
PMID: 20377206
Function and structure of a prokaryotic formylglycine-generating enzyme.
Carlson BL, Ballister ER, Skordalakes E, King DS, Breidenbach MA, Gilmore SA, Berger JM, Bertozzi CR., J Biol Chem 283(29), 2008
PMID: 18390551
Anaerobic sulfatase-maturating enzymes, first dual substrate radical S-adenosylmethionine enzymes.
Benjdia A, Subramanian S, Leprince J, Vaudry H, Johnson MK, Berteau O., J Biol Chem 283(26), 2008
PMID: 18408004
In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S] clusters.
Grove TL, Lee KH, St Clair J, Krebs C, Booker SJ., Biochemistry 47(28), 2008
PMID: 18558715
Sulfotransferases, sulfatases and formylglycine-generating enzymes: a sulfation fascination.
Bojarová P, Williams SJ., Curr Opin Chem Biol 12(5), 2008
PMID: 18625336
Purification and characterization of the recombinant arylsulfatase cloned from Pseudoalteromonas carrageenovora.
Kim DE, Kim KH, Bae YJ, Lee JH, Jang YH, Nam SW., Protein Expr Purif 39(1), 2005
PMID: 15596366
Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme.
Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, Ficner R, Rudolph MG., Cell 121(4), 2005
PMID: 15907468
Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship.
Sardiello M, Annunziata I, Roma G, Ballabio A., Hum Mol Genet 14(21), 2005
PMID: 16174644
Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility.
Hanson SR, Best MD, Wong CH., Angew Chem Int Ed Engl 43(43), 2004
PMID: 15493058
Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme.
Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M, von Figura K., Cell 113(4), 2003
PMID: 12757705
Crystal structure of a covalent intermediate of endogenous human arylsulfatase A.
Chruszcz M, Laidler P, Monkiewicz M, Ortlund E, Lebioda L, Lewinski K., J Inorg Biochem 96(2-3), 2003
PMID: 12888274
Homemade cofactors: self-processing in galactose oxidase.
Xie L, van der Donk WA., Proc Natl Acad Sci U S A 98(23), 2001
PMID: 11698675
Structure of a quinohemoprotein amine dehydrogenase with an uncommon redox cofactor and highly unusual crosslinking.
Datta S, Mori Y, Takagi K, Kawaguchi K, Chen ZW, Okajima T, Kuroda S, Ikeda T, Kano K, Tanizawa K, Mathews FS., Proc Natl Acad Sci U S A 98(25), 2001
PMID: 11717396
The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313.
Kahnert A, Vermeij P, Wietek C, James P, Leisinger T, Kertesz MA., J Bacteriol 182(10), 2000
PMID: 10781557
Cloning of a mucin-desulfating sulfatase gene from Prevotella strain RS2 and its expression using a Bacteroides recombinant system.
Wright DP, Knight CG, Parkar SG, Christie DL, Roberton AM., J Bacteriol 182(11), 2000
PMID: 10809675
Defining a rob regulon in Escherichia coli by using transposon mutagenesis.
Bennik MH, Pomposiello PJ, Thorne DF, Demple B., J Bacteriol 182(13), 2000
PMID: 10850996
Novel cofactors via post-translational modifications of enzyme active sites.
Okeley NM, van der Donk WA., Chem Biol 7(7), 2000
PMID: 10903941
Escherichia coli K1 aslA contributes to invasion of brain microvascular endothelial cells in vitro and in vivo.
Hoffman JA, Badger JL, Zhang Y, Huang SH, Kim KS., Infect Immun 68(9), 2000
PMID: 10948126

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 10336424
PubMed | Europe PMC

Suchen in

Google Scholar