1.3 angstrom structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family

Boltes I, Czapinska H, Kahnert A, Bulow von R, Dierks T, Schmidt B, Figura von K, Kertesz MA, Uson I (2001)
STRUCTURE 9(6): 483-491.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Boltes, I; Czapinska, H; Kahnert, A; Bulow von, R; Dierks, ThomasUniBi; Schmidt, B; Figura von, K; Kertesz, MA; Uson, I
Abstract / Bemerkung
Background: Sulfatases constitute a family of enzymes with a highly conserved active site region including a C alpha -formylglycine that is posttranslationally generated by the oxidation of a conserved cysteine or serine residue. The crystal structures of two human arylsulfatases, ASA and ASB, along with ASA mutants and their complexes led to different proposals for the catalytic mechanism in the hydrolysis of sulfate esters. Results: The crystal structure of a bacterial sulfatase from Pseudomonas aeruginosa (PAS) has been determined at 1.3 Angstrom. Fold and active site region are strikingly similar to those of the known human sulfatases. The structure allows a precise determination of the active site region, unequivocally showing the presence of a C alpha -formylglycine hydrate as the key catalytic residue. Furthermore, the cation located in the active site is unambiguously characterized as calcium by both its B value and the geometry of its coordination sphere. The active site contains a noncovalently bonded sulfate that occupies the same position as the one in para-nitrocate-cholsulfate in previously studied ASA complexes. Conclusions: The structure of PAS shows that the resting state of the key catalytic residue in sulfatases is a formylglycine hydrate. These structural data establish a mechanism for sulfate ester cleavage involving an aldehyde hydrate as the functional group that initiates the reaction through a nucleophilic attack on the sulfur atom in the substrate. The alcohol is eliminated from a reaction intermediate containing pentacoordinated sulfur. Subsequent elimination of the sulfate regenerates the aldehyde, which is again hydrated. The metal cation involved in stabilizing the charge and anchoring the substrate during catalysis is established as calcium.
Erscheinungsjahr
2001
Zeitschriftentitel
STRUCTURE
Band
9
Ausgabe
6
Seite(n)
483-491
ISSN
0969-2126
Page URI
https://pub.uni-bielefeld.de/record/2350800

Zitieren

Boltes I, Czapinska H, Kahnert A, et al. 1.3 angstrom structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family. STRUCTURE. 2001;9(6):483-491.
Boltes, I., Czapinska, H., Kahnert, A., Bulow von, R., Dierks, T., Schmidt, B., Figura von, K., et al. (2001). 1.3 angstrom structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family. STRUCTURE, 9(6), 483-491. https://doi.org/10.1016/S0969-2126(01)00609-8
Boltes, I, Czapinska, H, Kahnert, A, Bulow von, R, Dierks, Thomas, Schmidt, B, Figura von, K, Kertesz, MA, and Uson, I. 2001. “1.3 angstrom structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family”. STRUCTURE 9 (6): 483-491.
Boltes, I., Czapinska, H., Kahnert, A., Bulow von, R., Dierks, T., Schmidt, B., Figura von, K., Kertesz, M. A., and Uson, I. (2001). 1.3 angstrom structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family. STRUCTURE 9, 483-491.
Boltes, I., et al., 2001. 1.3 angstrom structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family. STRUCTURE, 9(6), p 483-491.
I. Boltes, et al., “1.3 angstrom structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family”, STRUCTURE, vol. 9, 2001, pp. 483-491.
Boltes, I., Czapinska, H., Kahnert, A., Bulow von, R., Dierks, T., Schmidt, B., Figura von, K., Kertesz, M.A., Uson, I.: 1.3 angstrom structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family. STRUCTURE. 9, 483-491 (2001).
Boltes, I, Czapinska, H, Kahnert, A, Bulow von, R, Dierks, Thomas, Schmidt, B, Figura von, K, Kertesz, MA, and Uson, I. “1.3 angstrom structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family”. STRUCTURE 9.6 (2001): 483-491.

80 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Identification and Signature Sequences of Bacterial Δ4,5Hexuronate-2-O-Sulfatases.
Wang S, Guan J, Zhang Q, Chen X, Li F., Front Microbiol 10(), 2019
PMID: 31024490
Comparative Study of Two Chondroitin Sulfate/Dermatan Sulfate 4-O-Sulfatases With High Identity.
Wang S, Su T, Zhang Q, Guan J, He J, Gu L, Li F., Front Microbiol 10(), 2019
PMID: 31244815
A homozygous founder missense variant in arylsulfatase G abolishes its enzymatic activity causing atypical Usher syndrome in humans.
Khateb S, Kowalewski B, Bedoni N, Damme M, Pollack N, Saada A, Obolensky A, Ben-Yosef T, Gross M, Dierks T, Banin E, Rivolta C, Sharon D., Genet Med 20(9), 2018
PMID: 29300381
Challenges and advances in the computational modeling of biological phosphate hydrolysis.
Petrović D, Szeler K, Kamerlin SCL., Chem Commun (Camb) 54(25), 2018
PMID: 29412205
Structural and Mechanistic Analysis of the Choline Sulfatase from Sinorhizobium melliloti: A Class I Sulfatase Specific for an Alkyl Sulfate Ester.
van Loo B, Schober M, Valkov E, Heberlein M, Bornberg-Bauer E, Faber K, Hyvönen M, Hollfelder F., J Mol Biol 430(7), 2018
PMID: 29458126
Evolutionary repurposing of a sulfatase: A new Michaelis complex leads to efficient transition state charge offset.
Miton CM, Jonas S, Fischer G, Duarte F, Mohamed MF, van Loo B, Kintses B, Kamerlin SCL, Tokuriki N, Hyvönen M, Hollfelder F., Proc Natl Acad Sci U S A 115(31), 2018
PMID: 30012610
Characterization of an arylsulfatase from a mutant library of Pseudoalteromonas carrageenovora arylsulfatase.
Zhu Y, Liu H, Qiao C, Li L, Jiang Z, Xiao A, Ni H., Int J Biol Macromol 96(), 2017
PMID: 27940339
Structure of a lipid A phosphoethanolamine transferase suggests how conformational changes govern substrate binding.
Anandan A, Evans GL, Condic-Jurkic K, O'Mara ML, John CM, Phillips NJ, Jarvis GA, Wills SS, Stubbs KA, Moraes I, Kahler CM, Vrielink A., Proc Natl Acad Sci U S A 114(9), 2017
PMID: 28193899
Crystal structure of thermostable alkylsulfatase SdsAP from Pseudomonas sp. S9.
Sun L, Chen P, Su Y, Cai Z, Ruan L, Xu X, Wu Y., Biosci Rep 37(3), 2017
PMID: 28442601
Insights into Hunter syndrome from the structure of iduronate-2-sulfatase.
Demydchuk M, Hill CH, Zhou A, Bunkóczi G, Stein PE, Marchesan D, Deane JE, Read RJ., Nat Commun 8(), 2017
PMID: 28593992
Heterologous expression in Pichia pastoris and biochemical characterization of the unmodified sulfatase from Fusarium proliferatum LE1.
Korban SA, Bobrov KS, Maynskova MA, Naryzhny SN, Vlasova OL, Eneyskaya EV, Kulminskaya AA., Protein Eng Des Sel 30(7), 2017
PMID: 28651356
Enzyme-Assisted Preparation of Furcellaran-Like κ-/β-Carrageenan.
Préchoux A, Genicot S, Rogniaux H, Helbert W., Mar Biotechnol (NY) 18(1), 2016
PMID: 26585588
Facile Alkaline Lysis of Escherichia coli Cells in High-Throughput Mode for Screening Enzyme Mutants: Arylsulfatase as an Example.
Yuan M, Yang X, Li Y, Liu H, Pu J, Zhan CG, Liao F., Appl Biochem Biotechnol 179(4), 2016
PMID: 26899233
Promiscuity in the Enzymatic Catalysis of Phosphate and Sulfate Transfer.
Pabis A, Duarte F, Kamerlin SC., Biochemistry 55(22), 2016
PMID: 27187273
Striking Effects of Storage Buffers on Apparent Half-Lives of the Activity of Pseudomonas aeruginosa Arylsulfatase.
Li Y, Yang X, Wang D, Hu X, Yuan M, Pu J, Zhan CG, Yang Z, Liao F., Protein J 35(4), 2016
PMID: 27372107
Chondroitin sulfate/dermatan sulfate sulfatases from mammals and bacteria.
Wang S, Sugahara K, Li F., Glycoconj J 33(6), 2016
PMID: 27526113
Detection, production, and application of microbial arylsulfatases.
Stressler T, Seitl I, Kuhn A, Fischer L., Appl Microbiol Biotechnol 100(21), 2016
PMID: 27654655
Matching the Diversity of Sulfated Biomolecules: Creation of a Classification Database for Sulfatases Reflecting Their Substrate Specificity.
Barbeyron T, Brillet-Guéguen L, Carré W, Carrière C, Caron C, Czjzek M, Hoebeke M, Michel G., PLoS One 11(10), 2016
PMID: 27749924
Approximated maximum adsorption of His-tagged enzyme/mutants on Ni2+-NTA for comparison of specific activities.
Li Y, Long G, Yang X, Hu X, Feng Y, Tan D, Xie Y, Pu J, Liao F., Int J Biol Macromol 74(), 2015
PMID: 25542175
Cooperative Electrostatic Interactions Drive Functional Evolution in the Alkaline Phosphatase Superfamily.
Barrozo A, Duarte F, Bauer P, Carvalho AT, Kamerlin SC., J Am Chem Soc 137(28), 2015
PMID: 26091851
Microbial alkyl- and aryl-sulfatases: mechanism, occurrence, screening and stereoselectivities.
Toesch M, Schober M, Faber K., Appl Microbiol Biotechnol 98(4), 2014
PMID: 24352732
One in a million: flow cytometric sorting of single cell-lysate assays in monodisperse picolitre double emulsion droplets for directed evolution.
Zinchenko A, Devenish SR, Kintses B, Colin PY, Fischlechner M, Hollfelder F., Anal Chem 86(5), 2014
PMID: 24517505
Stereochemistry and Mechanism of Enzymatic and Non-Enzymatic Hydrolysis of Benzylic sec-Sulfate Esters.
Toesch M, Schober M, Breinbauer R, Faber K., European J Org Chem 2014(18), 2014
PMID: 25232289
Efficient, crosswise catalytic promiscuity among enzymes that catalyze phosphoryl transfer.
Mohamed MF, Hollfelder F., Biochim Biophys Acta 1834(1), 2013
PMID: 22885024
Sulfatase inhibitors: a patent review.
Williams SJ., Expert Opin Ther Pat 23(1), 2013
PMID: 23136854
Steroid derivatives as inhibitors of steroid sulfatase.
Mostafa YA, Taylor SD., J Steroid Biochem Mol Biol 137(), 2013
PMID: 23391659
One-pot deracemization of sec-alcohols: enantioconvergent enzymatic hydrolysis of alkyl sulfates using stereocomplementary sulfatases.
Schober M, Toesch M, Knaus T, Strohmeier GA, van Loo B, Fuchs M, Hollfelder F, Macheroux P, Faber K., Angew Chem Int Ed Engl 52(11), 2013
PMID: 23401148
One-Pot Deracemization of sec-Alcohols: Enantioconvergent Enzymatic Hydrolysis of Alkyl Sulfates Using Stereocomplementary Sulfatases.
Schober M, Toesch M, Knaus T, Strohmeier GA, van Loo B, Fuchs M, Hollfelder F, Macheroux P, Faber K., Angew Chem Weinheim Bergstr Ger 125(11), 2013
PMID: 25821253
Further characterization of Cys-type and Ser-type anaerobic sulfatase maturating enzymes suggests a commonality in the mechanism of catalysis.
Grove TL, Ahlum JH, Qin RM, Lanz ND, Radle MI, Krebs C, Booker SJ., Biochemistry 52(17), 2013
PMID: 23477283
Modeling catalytic promiscuity in the alkaline phosphatase superfamily.
Duarte F, Amrein BA, Kamerlin SC., Phys Chem Chem Phys 15(27), 2013
PMID: 23728154
The structure of the neisserial lipooligosaccharide phosphoethanolamine transferase A (LptA) required for resistance to polymyxin.
Wanty C, Anandan A, Piek S, Walshe J, Ganguly J, Carlson RW, Stubbs KA, Kahler CM, Vrielink A., J Mol Biol 425(18), 2013
PMID: 23810904
Sulfatase-activated fluorophores for rapid discrimination of mycobacterial species and strains.
Beatty KE, Williams M, Carlson BL, Swarts BM, Warren RM, van Helden PD, Bertozzi CR., Proc Natl Acad Sci U S A 110(32), 2013
PMID: 23878250
Structure and stability of the molybdenum cofactor intermediate cyclic pyranopterin monophosphate.
Santamaria-Araujo JA, Wray V, Schwarz G., J Biol Inorg Chem 17(1), 2012
PMID: 21877100
Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution.
Kintses B, Hein C, Mohamed MF, Fischlechner M, Courtois F, Lainé C, Hollfelder F., Chem Biol 19(8), 2012
PMID: 22921067
The structure of human GALNS reveals the molecular basis for mucopolysaccharidosis IV A.
Rivera-Colón Y, Schutsky EK, Kita AZ, Garman SC., J Mol Biol 423(5), 2012
PMID: 22940367
Structure and mechanism of an inverting alkylsulfatase from Pseudomonas sp. DSM6611 specific for secondary alkyl sulfates.
Knaus T, Schober M, Kepplinger B, Faccinelli M, Pitzer J, Faber K, Macheroux P, Wagner U., FEBS J 279(23), 2012
PMID: 23061549
A stereoselective inverting sec-alkylsulfatase for the deracemization of sec-alcohols.
Schober M, Gadler P, Knaus T, Kayer H, Birner-Grünberger R, Gülly C, Macheroux P, Wagner U, Faber K., Org Lett 13(16), 2011
PMID: 21770430
Efficient catalytic promiscuity for chemically distinct reactions.
Babtie AC, Bandyopadhyay S, Olguin LF, Hollfelder F., Angew Chem Int Ed Engl 48(20), 2009
PMID: 19373810
Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS.
Lu D, Wörmann ME, Zhang X, Schneewind O, Gründling A, Freemont PS., Proc Natl Acad Sci U S A 106(5), 2009
PMID: 19168632
Distinct and essential morphogenic functions for wall- and lipo-teichoic acids in Bacillus subtilis.
Schirner K, Marles-Wright J, Lewis RJ, Errington J., EMBO J 28(7), 2009
PMID: 19229300
Heparin/heparan sulfate N-sulfamidase from Flavobacterium heparinum: structural and biochemical investigation of catalytic nitrogen-sulfur bond cleavage.
Myette JR, Soundararajan V, Behr J, Shriver Z, Raman R, Sasisekharan R., J Biol Chem 284(50), 2009
PMID: 19726673
Interaction of arylsulfatase-A (ASA) with its natural sulfoglycolipid substrates: a computational and site-directed mutagenesis study.
Schenk M, Koppisetty CA, Santos DC, Carmona E, Bhatia S, Nyholm PG, Tanphaichitr N., Glycoconj J 26(8), 2009
PMID: 19381802
Paralog of the formylglycine-generating enzyme--retention in the endoplasmic reticulum by canonical and noncanonical signals.
Gande SL, Mariappan M, Schmidt B, Pringle TH, von Figura K, Dierks T., FEBS J 275(6), 2008
PMID: 18266766
Direct evidence for ArO-S bond cleavage upon inactivation of Pseudomonas aeruginosa arylsulfatase by aryl sulfamates.
Bojarová P, Denehy E, Walker I, Loft K, De Souza DP, Woo LW, Potter BV, McConville MJ, Williams SJ., Chembiochem 9(4), 2008
PMID: 18288656
In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S] clusters.
Grove TL, Lee KH, St Clair J, Krebs C, Booker SJ., Biochemistry 47(28), 2008
PMID: 18558715
Sulfotransferases, sulfatases and formylglycine-generating enzymes: a sulfation fascination.
Bojarová P, Williams SJ., Curr Opin Chem Biol 12(5), 2008
PMID: 18625336
Heparin-degrading sulfatases in hepatocellular carcinoma: roles in pathogenesis and therapy targets.
Lai JP, Thompson JR, Sandhu DS, Roberts LR., Future Oncol 4(6), 2008
PMID: 19086847
The heparanome--the enigma of encoding and decoding heparan sulfate sulfation.
Lamanna WC, Kalus I, Padva M, Baldwin RJ, Merry CL, Dierks T., J Biotechnol 129(2), 2007
PMID: 17337080
Sulfatase modifying factor 1 trafficking through the cells: from endoplasmic reticulum to the endoplasmic reticulum.
Zito E, Buono M, Pepe S, Settembre C, Annunziata I, Surace EM, Dierks T, Monti M, Cozzolino M, Pucci P, Ballabio A, Cosma MP., EMBO J 26(10), 2007
PMID: 17446859
Analysis of normal and mutant iduronate-2-sulphatase conformation.
Parkinson-Lawrence E, Turner C, Hopwood J, Brooks D., Biochem J 386(pt 2), 2005
PMID: 15500445
Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme.
Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, Ficner R, Rudolph MG., Cell 121(4), 2005
PMID: 15907468
Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship.
Sardiello M, Annunziata I, Roma G, Ballabio A., Hum Mol Genet 14(21), 2005
PMID: 16174644
Highly enantioselective sec-alkyl sulfatase activity of the marine planctomycete Rhodopirellula baltica shows retention of configuration.
Wallner SR, Bauer M, Würdemann C, Wecker P, Glöckner FO, Faber K., Angew Chem Int Ed Engl 44(39), 2005
PMID: 16161167
Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility.
Hanson SR, Best MD, Wong CH., Angew Chem Int Ed Engl 43(43), 2004
PMID: 15493058
Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme.
Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M, von Figura K., Cell 113(4), 2003
PMID: 12757705
Crystal structure of a covalent intermediate of endogenous human arylsulfatase A.
Chruszcz M, Laidler P, Monkiewicz M, Ortlund E, Lebioda L, Lewinski K., J Inorg Biochem 96(2-3), 2003
PMID: 12888274
Sulfotransferases and sulfatases in mycobacteria.
Mougous JD, Green RE, Williams SJ, Brenner SE, Bertozzi CR., Chem Biol 9(7), 2002
PMID: 12144918

36 References

Daten bereitgestellt von Europe PubMed Central.

The sulfatase gene family.
Parenti G, Meroni G, Ballabio A., Curr. Opin. Genet. Dev. 7(3), 1997
PMID: 9229115
A novel protein modification generating an aldehyde group in sulfatases: its role in catalysis and disease.
von Figura K, Schmidt B, Selmer T, Dierks T., Bioessays 20(6), 1998
PMID: 9699462
A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency.
Schmidt B, Selmer T, Ingendoh A, von Figura K., Cell 82(2), 1995
PMID: 7628016
Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum.
Dierks T, Schmidt B, von Figura K., Proc. Natl. Acad. Sci. U.S.A. 94(22), 1997
PMID: 9342345
Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine.
Miech C, Dierks T, Selmer T, von Figura K, Schmidt B., J. Biol. Chem. 273(9), 1998
PMID: 9478923
Metachromatic leukodystrophy and multiple sulfatase deficiency
Kolodny, 1995
Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine.
Dierks T, Miech C, Hummerjohann J, Schmidt B, Kertesz MA, von Figura K., J. Biol. Chem. 273(40), 1998
PMID: 9748219
Regulation of the sulfate starvation response in Pseudomonas aeruginosa: role of cysteine biosynthetic intermediates.
Hummerjohann J, Kuttel E, Quadroni M, Ragaller J, Leisinger T, Kertesz MA., Microbiology (Reading, Engl.) 144 ( Pt 5)(), 1998
PMID: 9611812
Crystal structure of human arylsulfatase A: the aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis.
Lukatela G, Krauss N, Theis K, Selmer T, Gieselmann V, von Figura K, Saenger W., Biochemistry 37(11), 1998
PMID: 9521684
Structure of a human lysosomal sulfatase.
Bond CS, Clements PR, Ashby SJ, Collyer CA, Harrop SJ, Hopwood JJ, Guss JM., Structure 5(2), 1997
PMID: 9032078
Crystal structure of an enzyme substrate complex provides insight to the interaction between arylsulfatase A and its substrates during catalysis
von, J. Mol. Biol. 305(), 2000
Improved coefficients for maps using phases from partial structures with errors
Read, Acta Crystallogr. A 42(), 1986
The Cambridge crystallographic data center
Allen, Acta Crystallogr. B 35(), 1979
Bond-valence parameters for solids
Brese, Acta Crystallogr. B 47(), 1991
Mapping the protein universe.
Holm L, Sander C., Science 273(5275), 1996
PMID: 8662544
Amino acid residues forming the active site of arylsulfatase A. Role in catalytic activity and substrate binding.
Waldow A, Schmidt B, Dierks T, von Bulow R, von Figura K., J. Biol. Chem. 274(18), 1999
PMID: 10212197
Crystallisation of biological macromolecules
McPherson, J. Crystal Growth 122(), 1998
Processing of X-ray diffraction data collected in oscillation mode
Otwinowski, Methods Enzymol. 276(), 1997
Advances in direct methods for protein crystallography.
Uson I, Sheldrick GM., Curr. Opin. Struct. Biol. 9(5), 1999
PMID: 10508770
Maximum likelihood heavy atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods
de, Methods Enzymol. 276(), 1997
Dm
Cowtan, Joint CCP4 ESF-EACBM Newslett. on Protein Crystallogr. 31(), 1994
Improved methods for building protein models in electron density maps and the location of errors in these models.
Jones TA, Zou JY, Cowan SW, Kjeldgaard M., Acta Crystallogr., A, Found. Crystallogr. 47 ( Pt 2)(), 1991
PMID: 2025413
Automated protein model building combined with iterative structure refinement.
Perrakis A, Morris R, Lamzin VS., Nat. Struct. Biol. 6(5), 1999
PMID: 10331874
SHELXL: high-resolution refinement.
Sheldrick GM, Schneider TR., Meth. Enzymol. 277(), 1997
PMID: 18488315
Assessment of phase accuracy by cross validation: the free R value. Methods and applications.
Brunger AT., Acta Crystallogr. D Biol. Crystallogr. 49(Pt 1), 1993
PMID: 15299543
1.7 Å structure of the stabilized REIv mutant T39K paper. Application of local NCS restraints
Usón, Acta Crystallogr. D 55(), 1997
Raster3D: photorealistic molecular graphics.
Merritt EA, Bacon DJ., Meth. Enzymol. 277(), 1997
PMID: 18488322
PROCHECK: a program to check the stereochemical quality of protein structures.
Laskowski RA, MacArthur MW, Moss DS, Thornton JM., J Appl Crystallogr 26(2), 1993
PMID: c6802
WHAT IF: a molecular modeling and drug design program.
Vriend G., J Mol Graph 8(1), 1990
PMID: 2268628
Conformation of polypeptides and proteins
Ramachandran, Adv. Protein Chem. 28(), 1968
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 11435113
PubMed | Europe PMC

Suchen in

Google Scholar