Posttranslational modification of serine to formylglycine in bacterial sulfatases - Recognition of the modification motif by the iron-sulfur protein AtsB

Marquordt C, Fang QH, Will E, Peng JH, Figura von K, Dierks T (2003)
JOURNAL OF BIOLOGICAL CHEMISTRY 278(4): 2212-2218.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Marquordt, C; Fang, QH; Will, E; Peng, JH; Figura von, K; Dierks, ThomasUniBi
Abstract / Bemerkung
Calpha-formylglycine is the catalytic residue of sulfatases. Formylglycine is generated by posttranslational modification of a cysteine (pro- and eukaryotes) or serine (pro-karyotes) located in a conserved (C/S)XPXR motif. The modifying enzymes are unknown. AtsB, an iron-sulfur protein, is strictly required for modification of Se-72 in the periplasmic sulfatase AtsA of Klebsiella pneumoniae. Here we show W that AtsB is a cytosolic protein acting on newly synthesized serine-type sulfatases, (ii) that AtsB-mediated FGly formation is dependent on AtsA's signal peptide, and (iii) that the cytosolic cysteine-type sulfatase of Pseudomonas aeruginosa can be converted into a substrate of AtsB if the cysteine is substituted by serine and a signal peptide is added. Thus, formylglycine formation in serine-type sulfatases depends both on AtsB and on the presence of a signal peptide, and AtsB can act on sulfatases of other species. AtsB physically interacts with AtsA in a Ser(72)-dependent manner, as shown in yeast two-hybrid and GST pulldown experiments. This strongly suggests that AtsB is the serine-modifying enzyme and that AtsB relies on a cytosolic function of the sulfatase's signal peptide.
Erscheinungsjahr
2003
Zeitschriftentitel
JOURNAL OF BIOLOGICAL CHEMISTRY
Band
278
Ausgabe
4
Seite(n)
2212-2218
ISSN
0021-9258
eISSN
1083-351X
Page URI
https://pub.uni-bielefeld.de/record/2350768

Zitieren

Marquordt C, Fang QH, Will E, Peng JH, Figura von K, Dierks T. Posttranslational modification of serine to formylglycine in bacterial sulfatases - Recognition of the modification motif by the iron-sulfur protein AtsB. JOURNAL OF BIOLOGICAL CHEMISTRY. 2003;278(4):2212-2218.
Marquordt, C., Fang, Q. H., Will, E., Peng, J. H., Figura von, K., & Dierks, T. (2003). Posttranslational modification of serine to formylglycine in bacterial sulfatases - Recognition of the modification motif by the iron-sulfur protein AtsB. JOURNAL OF BIOLOGICAL CHEMISTRY, 278(4), 2212-2218. https://doi.org/10.1074/jbc.M209435200
Marquordt, C, Fang, QH, Will, E, Peng, JH, Figura von, K, and Dierks, Thomas. 2003. “Posttranslational modification of serine to formylglycine in bacterial sulfatases - Recognition of the modification motif by the iron-sulfur protein AtsB”. JOURNAL OF BIOLOGICAL CHEMISTRY 278 (4): 2212-2218.
Marquordt, C., Fang, Q. H., Will, E., Peng, J. H., Figura von, K., and Dierks, T. (2003). Posttranslational modification of serine to formylglycine in bacterial sulfatases - Recognition of the modification motif by the iron-sulfur protein AtsB. JOURNAL OF BIOLOGICAL CHEMISTRY 278, 2212-2218.
Marquordt, C., et al., 2003. Posttranslational modification of serine to formylglycine in bacterial sulfatases - Recognition of the modification motif by the iron-sulfur protein AtsB. JOURNAL OF BIOLOGICAL CHEMISTRY, 278(4), p 2212-2218.
C. Marquordt, et al., “Posttranslational modification of serine to formylglycine in bacterial sulfatases - Recognition of the modification motif by the iron-sulfur protein AtsB”, JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 278, 2003, pp. 2212-2218.
Marquordt, C., Fang, Q.H., Will, E., Peng, J.H., Figura von, K., Dierks, T.: Posttranslational modification of serine to formylglycine in bacterial sulfatases - Recognition of the modification motif by the iron-sulfur protein AtsB. JOURNAL OF BIOLOGICAL CHEMISTRY. 278, 2212-2218 (2003).
Marquordt, C, Fang, QH, Will, E, Peng, JH, Figura von, K, and Dierks, Thomas. “Posttranslational modification of serine to formylglycine in bacterial sulfatases - Recognition of the modification motif by the iron-sulfur protein AtsB”. JOURNAL OF BIOLOGICAL CHEMISTRY 278.4 (2003): 2212-2218.

23 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Two-fold Bioorthogonal Derivatization by Different Formylglycine-Generating Enzymes.
Krüger T, Weiland S, Falck G, Gerlach M, Boschanski M, Alam S, Müller KM, Dierks T, Sewald N., Angew Chem Int Ed Engl 57(24), 2018
PMID: 29579347
Homologous expression and biochemical characterization of the arylsulfatase from Kluyveromyces lactis and its relevance in milk processing.
Stressler T, Leisibach D, Lutz-Wahl S, Kuhn A, Fischer L., Appl Microbiol Biotechnol 100(12), 2016
PMID: 26875879
Probing the protein interaction network of Pseudomonas aeruginosa cells by chemical cross-linking mass spectrometry.
Navare AT, Chavez JD, Zheng C, Weisbrod CR, Eng JK, Siehnel R, Singh PK, Manoil C, Bruce JE., Structure 23(4), 2015
PMID: 25800553
Human recombinant lysosomal enzymes produced in microorganisms.
Espejo-Mojica ÁJ, Alméciga-Díaz CJ, Rodríguez A, Mosquera Á, Díaz D, Beltrán L, Díaz S, Pimentel N, Moreno J, Sánchez J, Sánchez OF, Córdoba H, Poutou-Piñales RA, Barrera LA., Mol Genet Metab 116(1-2), 2015
PMID: 26071627
Microbial alkyl- and aryl-sulfatases: mechanism, occurrence, screening and stereoselectivities.
Toesch M, Schober M, Faber K., Appl Microbiol Biotechnol 98(4), 2014
PMID: 24352732
Radical S-adenosylmethionine enzymes.
Broderick JB, Duffus BR, Duschene KS, Shepard EM., Chem Rev 114(8), 2014
PMID: 24476342
High-density transcriptional initiation signals underline genomic islands in bacteria.
Huang Q, Cheng X, Cheung MK, Kiselev SS, Ozoline ON, Kwan HS., PLoS One 7(3), 2012
PMID: 22448273
Anaerobic sulfatase-maturating enzymes, first dual substrate radical S-adenosylmethionine enzymes.
Benjdia A, Subramanian S, Leprince J, Vaudry H, Johnson MK, Berteau O., J Biol Chem 283(26), 2008
PMID: 18408004
In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S] clusters.
Grove TL, Lee KH, St Clair J, Krebs C, Booker SJ., Biochemistry 47(28), 2008
PMID: 18558715
Sulfotransferases, sulfatases and formylglycine-generating enzymes: a sulfation fascination.
Bojarová P, Williams SJ., Curr Opin Chem Biol 12(5), 2008
PMID: 18625336
Systemic inflammation and neurodegeneration in a mouse model of multiple sulfatase deficiency.
Settembre C, Annunziata I, Spampanato C, Zarcone D, Cobellis G, Nusco E, Zito E, Tacchetti C, Cosma MP, Ballabio A., Proc Natl Acad Sci U S A 104(11), 2007
PMID: 17360554
Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme.
Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, Ficner R, Rudolph MG., Cell 121(4), 2005
PMID: 15907468
Carbonylation of milk powder proteins as a consequence of processing conditions.
Fenaille F, Parisod V, Tabet JC, Guy PA., Proteomics 5(12), 2005
PMID: 16038017
Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship.
Sardiello M, Annunziata I, Roma G, Ballabio A., Hum Mol Genet 14(21), 2005
PMID: 16174644
Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility.
Hanson SR, Best MD, Wong CH., Angew Chem Int Ed Engl 43(43), 2004
PMID: 15493058
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 12419807
PubMed | Europe PMC

Suchen in

Google Scholar