The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes

Landgrebe J, Dierks T, Schmidt B, Figura von K (2003)
GENE 316: 47-56.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Landgrebe, J; Dierks, ThomasUniBi; Schmidt, B; Figura von, K
Abstract / Bemerkung
Recently, the human C-alpha-formylglycine (FGly)-generating enzyme (FGE), whose deficiency causes the autosomal-recessively transmitted lysosomal storage disease multiple sulfatase deficiency (MSD), has been identified. In sulfatases, FGE posttranslationally converts a cysteine residue to FGly, which is part of the catalytic site and is essential for sulfatase activity. FGE is encoded by the sulfatase modifying factor 1 (SUMF1) gene. which defines a new gene family comprising orthologs from prokaryotes to higher eukaryotes. The genomes of E. coli, S. cerevisiae and C. elegans lack SUMF1, indicating a phylogenetic gap and the existence of an alternative FGly-generating system. The genomes of vertebrates including mouse, man and pufferfish contain a sulfatase modifying factor 2 (SUMF2) gene encoding an FGE paralog of unknown function. SUMF2 evolved from a single exon SUMF1 gene as found in diptera prior to divergent intron acquisition. In several prokaryotic genomes, the SUMF1 gene is cotranscribed with genes encoding sulfatases which require FGly modification. The FGE protein contains a single domain that is made up of three highly conserved subdomains spaced by nonconserved sequences of variable lengths. The similarity among the eukaryotic FGE orthologs varies between 72% and 100% for the three subdomains and is highest for the C-terminal subdomain, which is a hotspot for mutations in MSD patients. (C) 2003 Elsevier B.V. All rights reserved.
Page URI


Landgrebe J, Dierks T, Schmidt B, Figura von K. The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes. GENE. 2003;316:47-56.
Landgrebe, J., Dierks, T., Schmidt, B., & Figura von, K. (2003). The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes. GENE, 316, 47-56.
Landgrebe, J, Dierks, Thomas, Schmidt, B, and Figura von, K. 2003. “The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes”. GENE 316: 47-56.
Landgrebe, J., Dierks, T., Schmidt, B., and Figura von, K. (2003). The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes. GENE 316, 47-56.
Landgrebe, J., et al., 2003. The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes. GENE, 316, p 47-56.
J. Landgrebe, et al., “The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes”, GENE, vol. 316, 2003, pp. 47-56.
Landgrebe, J., Dierks, T., Schmidt, B., Figura von, K.: The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes. GENE. 316, 47-56 (2003).
Landgrebe, J, Dierks, Thomas, Schmidt, B, and Figura von, K. “The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes”. GENE 316 (2003): 47-56.

35 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Production and characterization of a human lysosomal recombinant iduronate-2-sulfatase produced in Pichia pastoris.
Pimentel N, Rodríguez-Lopez A, Díaz S, Losada JC, Díaz-Rincón DJ, Cardona C, Espejo-Mojica ÁJ, Ramírez AM, Ruiz F, Landázuri P, Poutou-Piñales RA, Cordoba-Ruiz HA, Alméciga-Díaz CJ, Barrera-Avellaneda LA., Biotechnol Appl Biochem 65(5), 2018
PMID: 29633336
Two-fold Bioorthogonal Derivatization by Different Formylglycine-Generating Enzymes.
Krüger T, Weiland S, Falck G, Gerlach M, Boschanski M, Alam S, Müller KM, Dierks T, Sewald N., Angew Chem Int Ed Engl 57(24), 2018
PMID: 29579347
Sulfatase modifying factor 1 trafficking through the cells: from endoplasmic reticulum to the endoplasmic reticulum.
Zito E, Buono M, Pepe S, Settembre C, Annunziata I, Surace EM, Dierks T, Monti M, Cozzolino M, Pucci P, Ballabio A, Cosma MP., EMBO J 35(23), 2016
PMID: 27908960
Enzyme replacement therapy in newborn mucopolysaccharidosis IVA mice: early treatment rescues bone lesions?
Tomatsu S, Montaño AM, Oikawa H, Dung VC, Hashimoto A, Oguma T, Gutiérrez ML, Takahashi T, Shimada T, Orii T, Sly WS., Mol Genet Metab 114(2), 2015
PMID: 24953405
Impact of enzyme replacement therapy and hematopoietic stem cell transplantation in patients with Morquio A syndrome.
Tomatsu S, Sawamoto K, Alméciga-Díaz CJ, Shimada T, Bober MB, Chinen Y, Yabe H, Montaño AM, Giugliani R, Kubaski F, Yasuda E, Rodríguez-López A, Espejo-Mojica AJ, Sánchez OF, Mason RW, Barrera LA, Mackenzie WG, Orii T., Drug Des Devel Ther 9(), 2015
PMID: 25897204
Reconstitution of Formylglycine-generating Enzyme with Copper(II) for Aldehyde Tag Conversion.
Holder PG, Jones LC, Drake PM, Barfield RM, Bañas S, de Hart GW, Baker J, Rabuka D., J Biol Chem 290(25), 2015
PMID: 25931126
Human recombinant lysosomal enzymes produced in microorganisms.
Espejo-Mojica ÁJ, Alméciga-Díaz CJ, Rodríguez A, Mosquera Á, Díaz D, Beltrán L, Díaz S, Pimentel N, Moreno J, Sánchez J, Sánchez OF, Córdoba H, Poutou-Piñales RA, Barrera LA., Mol Genet Metab 116(1-2), 2015
PMID: 26071627
Profile of secreted hydrolases, associated proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the degradation of hemicellulose.
Currie DH, Guss AM, Herring CD, Giannone RJ, Johnson CM, Lankford PK, Brown SD, Hettich RL, Lynd LR., Appl Environ Microbiol 80(16), 2014
PMID: 24907337
Molecular evaluation of a novel missense mutation & an insertional truncating mutation in SUMF1 gene.
Kotecha UH, Movva S, Sharma D, Verma J, Puri RD, Verma IC., Indian J Med Res 140(1), 2014
PMID: 25222778
Proprotein convertases process and thereby inactivate formylglycine-generating enzyme.
Ennemann EC, Radhakrishnan K, Mariappan M, Wachs M, Pringle TH, Schmidt B, Dierks T., J Biol Chem 288(8), 2013
PMID: 23288839
Genomic content of uncultured Bacteroidetes from contrasting oceanic provinces in the North Atlantic Ocean.
Gómez-Pereira PR, Schüler M, Fuchs BM, Bennke C, Teeling H, Waldmann J, Richter M, Barbe V, Bataille E, Glöckner FO, Amann R., Environ Microbiol 14(1), 2012
PMID: 21895912
HpSumf1 is involved in the activation of sulfatases responsible for regulation of skeletogenesis during sea urchin development.
Sakuma T, Ohnishi K, Fujita K, Ochiai H, Sakamoto N, Yamamoto T., Dev Genes Evol 221(3), 2011
PMID: 21706447
Lysosomal storage disease: revealing lysosomal function and physiology.
Parkinson-Lawrence EJ, Shandala T, Prodoehl M, Plew R, Borlace GN, Brooks DA., Physiology (Bethesda) 25(2), 2010
PMID: 20430954
Enzyme replacement therapy for Morquio A: an active recombinant N-acetylgalactosamine-6-sulfate sulfatase produced in Escherichia coli BL21.
Rodríguez A, Espejo AJ, Hernández A, Velásquez OL, Lizaraso LM, Cordoba HA, Sánchez OF, Alméciga-Díaz CJ, Barrera LA., J Ind Microbiol Biotechnol 37(11), 2010
PMID: 20582614
Enzyme replacement in a human model of mucopolysaccharidosis IVA in vitro and its biodistribution in the cartilage of wild type mice.
Dvorak-Ewell M, Wendt D, Hague C, Christianson T, Koppaka V, Crippen D, Kakkis E, Vellard M., PLoS One 5(8), 2010
PMID: 20808938
Effect of elongation factor 1alpha promoter and SUMF1 over in vitro expression of N-acetylgalactosamine-6-sulfate sulfatase.
Alméciga-Díaz CJ, Rueda-Paramo MA, Espejo AJ, Echeverri OY, Montaño A, Tomatsu S, Barrera LA., Mol Biol Rep 36(7), 2009
PMID: 18989752
Neonatal manifestation of multiple sulfatase deficiency.
Busche A, Hennermann JB, Bürger F, Proquitté H, Dierks T, von Arnim-Baas A, Horn D., Eur J Pediatr 168(8), 2009
PMID: 19066960
Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag.
Wu P, Shui W, Carlson BL, Hu N, Rabuka D, Lee J, Bertozzi CR., Proc Natl Acad Sci U S A 106(9), 2009
PMID: 19202059
Serial magnetic resonance imaging and neurophysiological studies in multiple sulphatase deficiency.
Zafeiriou DI, Vargiami E, Papadopoulou K, Dimitriou E, Mavridou I, Santamaria R, Canals I, Michelakakis H., Eur J Paediatr Neurol 12(3), 2008
PMID: 17881260
Paralog of the formylglycine-generating enzyme--retention in the endoplasmic reticulum by canonical and noncanonical signals.
Gande SL, Mariappan M, Schmidt B, Pringle TH, von Figura K, Dierks T., FEBS J 275(6), 2008
PMID: 18266766
Characterization and pharmacokinetic study of recombinant human N-acetylgalactosamine-6-sulfate sulfatase.
Tomatsu S, Montaño AM, Gutierrez M, Grubb JH, Oikawa H, Dung VC, Ohashi A, Nishioka T, Yamada M, Yamada M, Tosaka Y, Trandafirescu GG, Orii T., Mol Genet Metab 91(1), 2007
PMID: 17336563
Introducing genetically encoded aldehydes into proteins.
Carrico IS, Carlson BL, Bertozzi CR., Nat Chem Biol 3(6), 2007
PMID: 17450134
Sulfatases and human disease.
Diez-Roux G, Ballabio A., Annu Rev Genomics Hum Genet 6(), 2005
PMID: 16124866
Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme.
Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, Ficner R, Rudolph MG., Cell 121(4), 2005
PMID: 15907468
Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship.
Sardiello M, Annunziata I, Roma G, Ballabio A., Hum Mol Genet 14(21), 2005
PMID: 16174644
Molecular and functional analysis of SUMF1 mutations in multiple sulfatase deficiency.
Cosma MP, Pepe S, Parenti G, Settembre C, Annunziata I, Wade-Martins R, Di Domenico C, Di Natale P, Mankad A, Cox B, Uziel G, Mancini GM, Zammarchi E, Donati MA, Kleijer WJ, Filocamo M, Carrozzo R, Carella M, Ballabio A., Hum Mutat 23(6), 2004
PMID: 15146462

36 References

Daten bereitgestellt von Europe PubMed Central.

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000.
Bairoch A, Apweiler R., Nucleic Acids Res. 28(1), 2000
PMID: 10592178
1.3 A structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family.
Boltes I, Czapinska H, Kahnert A, von Bulow R, Dierks T, Schmidt B, von Figura K, Kertesz MA, Uson I., Structure 9(6), 2001
PMID: 11435113
Ensembl 2002: accommodating comparative genomics.
Clamp M, Andrews D, Barker D, Bevan P, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T, Durbin R, Eyras E, Gilbert J, Hammond M, Hubbard T, Kasprzyk A, Keefe D, Lehvaslaiho H, Iyer V, Melsopp C, Mongin E, Pettett R, Potter S, Rust A, Schmidt E, Searle S, Slater G, Smith J, Spooner W, Stabenau A, Stalker J, Stupka E, Ureta-Vidal A, Vastrik I, Birney E., Nucleic Acids Res. 31(1), 2003
PMID: 12519943
The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases.
Cosma MP, Pepe S, Annunziata I, Newbold RF, Grompe M, Parenti G, Ballabio A., Cell 113(4), 2003
PMID: 12757706
Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum.
Dierks T, Schmidt B, von Figura K., Proc. Natl. Acad. Sci. U.S.A. 94(22), 1997
PMID: 9342345
Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine.
Dierks T, Miech C, Hummerjohann J, Schmidt B, Kertesz MA, von Figura K., J. Biol. Chem. 273(40), 1998
PMID: 9748219
Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases.
Dierks T, Lecca MR, Schlotterhose P, Schmidt B, von Figura K., EMBO J. 18(8), 1999
PMID: 10205163
Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme.
Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M, von Figura K., Cell 113(4), 2003
PMID: 12757705
Prediction of glycosylation across the human proteome and the correlation to protein function
Gupta, Pac. Symp. Biocomput. (), 2002
Characterization of nirV and a gene encoding a novel pseudoazurin in Rhodobacter sphaeroides 2.4.3.
Jain R, Shapleigh JP., Microbiology (Reading, Engl.) 147(Pt 9), 2001
PMID: 11535790
A simple method for displaying the hydropathic character of a protein.
Kyte J, Doolittle RF., J. Mol. Biol. 157(1), 1982
PMID: 7108955
Crystal structure of human arylsulfatase A: the aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis.
Lukatela G, Krauss N, Theis K, Selmer T, Gieselmann V, von Figura K, Saenger W., Biochemistry 37(11), 1998
PMID: 9521684
Analysis of bacterial carbapenem antibiotic production genes reveals a novel beta-lactam biosynthesis pathway.
McGowan SJ, Sebaihia M, Porter LE, Stewart GS, Williams P, Bycroft BW, Salmond GP., Mol. Microbiol. 22(3), 1996
PMID: 8939426
The PSIPRED protein structure prediction server.
McGuffin LJ, Bryson K, Jones DT., Bioinformatics 16(4), 2000
PMID: 10869041
Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine.
Miech C, Dierks T, Selmer T, von Figura K, Schmidt B., J. Biol. Chem. 273(9), 1998
PMID: 9478923
PRODORIC: prokaryotic database of gene regulation.
Munch R, Hiller K, Barg H, Heldt D, Linz S, Wingender E, Jahn D., Nucleic Acids Res. 31(1), 2003
PMID: 12519998
Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.
Nielsen H, Engelbrecht J, Brunak S, von Heijne G., Protein Eng. 10(1), 1997
PMID: 9051728
WWW-query: an on-line retrieval system for biological sequence banks.
Perriere G, Gouy M., Biochimie 78(5), 1996
PMID: 8905155
EMBOSS: the European Molecular Biology Open Software Suite.
Rice P, Longden I, Bleasby A., Trends Genet. 16(6), 2000
PMID: 10827456
Transcriptional regulation of pentose utilisation systems in the Bacillus/Clostridium group of bacteria.
Rodionov DA, Mironov AA, Gelfand MS., FEMS Microbiol. Lett. 205(2), 2001
PMID: 11750820
RegulonDB (version 3.2): transcriptional regulation and operon organization in Escherichia coli K-12.
Salgado H, Santos-Zavaleta A, Gama-Castro S, Millan-Zarate D, Diaz-Peredo E, Sanchez-Solano F, Perez-Rueda E, Bonavides-Martinez C, Collado-Vides J., Nucleic Acids Res. 29(1), 2001
PMID: 11125053
Computational analysis of bacterial sulfatases and their modifying enzymes.
Schirmer A, Kolter R., Chem. Biol. 5(8), 1998
PMID: 9710560
A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency.
Schmidt B, Selmer T, Ingendoh A, von Figura K., Cell 82(2), 1995
PMID: 7628016
Pfam: multiple sequence alignments and HMM-profiles of protein domains.
Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R., Nucleic Acids Res. 26(1), 1998
PMID: 9399864
Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies
Strimmer, Mol. Biol. Evol. 13(), 1996
The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase.
Szameit C, Miech C, Balleininger M, Schmidt B, von Figura K, Dierks T., J. Biol. Chem. 274(22), 1999
PMID: 10336424
A new method for predicting signal sequence cleavage sites.
von Heijne G., Nucleic Acids Res. 14(11), 1986
PMID: 3714490
Database resources of the National Center for Biotechnology Information: 2002 update.
Wheeler DL, Church DM, Lash AE, Leipe DD, Madden TL, Pontius JU, Schuler GD, Schriml LM, Tatusova TA, Wagner L, Rapp BA., Nucleic Acids Res. 30(1), 2002
PMID: 11752242

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 14563551
PubMed | Europe PMC

Suchen in

Google Scholar