Synaptic transmission of graded membrane potential changes and spikes between identified visual interneurons

Rien D, Kern R, Kurtz R (2011)
European Journal of Neuroscience 34(5): 705-716.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.92 MB
Erscheinungsjahr
2011
Zeitschriftentitel
European Journal of Neuroscience
Band
34
Ausgabe
5
Seite(n)
705-716
ISSN
0953-816X
Page URI
https://pub.uni-bielefeld.de/record/2344925

Zitieren

Rien D, Kern R, Kurtz R. Synaptic transmission of graded membrane potential changes and spikes between identified visual interneurons. European Journal of Neuroscience. 2011;34(5):705-716.
Rien, D., Kern, R., & Kurtz, R. (2011). Synaptic transmission of graded membrane potential changes and spikes between identified visual interneurons. European Journal of Neuroscience, 34(5), 705-716. https://doi.org/10.1111/j.1460-9568.2011.07801.x
Rien, Diana, Kern, Roland, and Kurtz, Rafael. 2011. “Synaptic transmission of graded membrane potential changes and spikes between identified visual interneurons”. European Journal of Neuroscience 34 (5): 705-716.
Rien, D., Kern, R., and Kurtz, R. (2011). Synaptic transmission of graded membrane potential changes and spikes between identified visual interneurons. European Journal of Neuroscience 34, 705-716.
Rien, D., Kern, R., & Kurtz, R., 2011. Synaptic transmission of graded membrane potential changes and spikes between identified visual interneurons. European Journal of Neuroscience, 34(5), p 705-716.
D. Rien, R. Kern, and R. Kurtz, “Synaptic transmission of graded membrane potential changes and spikes between identified visual interneurons”, European Journal of Neuroscience, vol. 34, 2011, pp. 705-716.
Rien, D., Kern, R., Kurtz, R.: Synaptic transmission of graded membrane potential changes and spikes between identified visual interneurons. European Journal of Neuroscience. 34, 705-716 (2011).
Rien, Diana, Kern, Roland, and Kurtz, Rafael. “Synaptic transmission of graded membrane potential changes and spikes between identified visual interneurons”. European Journal of Neuroscience 34.5 (2011): 705-716.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:56Z
MD5 Prüfsumme
fce8c6a282aa233369fb9aaf18a41a9b


47 References

Daten bereitgestellt von Europe PubMed Central.

Approximate is better than ‘exact’ for interval estimation of binomial proportions
Agresti, Am. Stat. 52(), 1998
Analog signalling in mammalian cortical axons.
Alle H, Geiger JR., Curr. Opin. Neurobiol. 18(3), 2008
PMID: 18801430
Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Fly motion vision.
Borst A, Haag J, Reiff DF., Annu. Rev. Neurosci. 33(), 2010
PMID: 20225934
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
From stimulus encoding to feature extraction in weakly electric fish.
Gabbiani F, Metzner W, Wessel R, Koch C., Nature 384(6609), 1996
PMID: 8955269
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695

Hausen, 1984
Spike responses of 'non-spiking' visual interneurone.
Hengstenberg R., Nature 270(5635), 1977
PMID: 593352
The number and structure of giant vertical cells (VS) in the lobula plate of the blowfly Calliphora erythrocephala
Hengstenberg, J. Comp. Physiol. A. 149(), 1982
Crustacean motor pattern generator networks.
Hooper SL, DiCaprio RA., Neurosignals 13(1-2), 2004
PMID: 15004425
Visuomotor transformation in the fly gaze stabilization system.
Huston SJ, Krapp HG., PLoS Biol. 6(7), 2008
PMID: 18651791
Information processing by graded-potential transmission through tonically active synapses.
Juusola M, French AS, Uusitalo RO, Weckstrom M., Trends Neurosci. 19(7), 1996
PMID: 8799975
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly.
Krapp HG, Hengstenberg B, Hengstenberg R., J. Neurophysiol. 79(4), 1998
PMID: 9535957
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604
State-dependent performance of optic-flow processing interneurons.
Longden KD, Krapp HG., J. Neurophysiol. 102(6), 2009
PMID: 19812292
Active flight increases the gain of visual motion processing in Drosophila.
Maimon G, Straw AD, Dickinson MH., Nat. Neurosci. 13(3), 2010
PMID: 20154683
Principles of rhythmic motor pattern generation.
Marder E, Calabrese RL., Physiol. Rev. 76(3), 1996
PMID: 8757786
A behavioral role for feature detection by sensory bursts.
Marsat G, Pollack GS., J. Neurosci. 26(41), 2006
PMID: 17035539
Transient signals trigger synchronous bursts in an identified population of neurons.
Marsat G, Proville RD, Maler L., J. Neurophysiol. 102(2), 2009
PMID: 19474165
Neural coding of natural stimuli: information at sub-millisecond resolution.
Nemenman I, Lewen GD, Bialek W, de Ruyter van Steveninck RR., PLoS Comput. Biol. 4(3), 2008
PMID: 18369423
Random stimulation of spider mechanosensory neurons reveals long-lasting excitation by GABA and muscimol.
Pfeiffer K, Panek I, Hoger U, French AS, Torkkeli PH., J. Neurophysiol. 101(1), 2008
PMID: 19004993
Stimulus history reliably shapes action potential waveforms of cortical neurons.
de Polavieja GG, Harsch A, Kleppe I, Robinson HP, Juusola M., J. Neurosci. 25(23), 2005
PMID: 15944394
Behavioural state affects motion-sensitive neurones in the fly visual system.
Rosner R, Egelhaaf M, Warzecha AK., J. Exp. Biol. 213(2), 2010
PMID: 20038668
The rate of information transfer at graded-potential synapses
de, Nature 379(), 1996
Synchronized firing among retinal ganglion cells signals motion reversal.
Schwartz G, Taylor S, Fisher C, Harris R, Berry MJ 2nd., Neuron 55(6), 2007
PMID: 17880898
The stomatogastric nervous system: structure and function of a small neural network.
Selverston AI, Russell DF, Miller JP., Prog. Neurobiol. 7(3), 1976
PMID: 11525
Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential.
Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA., Nature 441(7094), 2006
PMID: 16625207
Local and global motion preferences in descending neurons of the fly.
Wertz A, Haag J, Borst A., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 195(12), 2009
PMID: 19830435
Probable inference, the law of succession, and statistical inference
Wilson, J. Am. Stat. Assoc. 22(), 1927
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21819463
PubMed | Europe PMC

Suchen in

Google Scholar