Purification, cloning, and overexpression of an alcohol dehydrogenase from Nocardia globerula reducing aliphatic ketones and bulky ketoesters

Parkot J, Gröger H, Hummel W (2010)
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 86(6): 1813-1820.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Parkot, Julia; Gröger, HaraldUniBi; Hummel, Werner
Abstract / Bemerkung
For the huge amount of chiral chemicals and precursors that can potentially be produced by biocatalysis, there is a tremendous need of enzymes with new substrate spectra, higher enantioselectivity, and increased activity. In this paper, a highly active alcohol dehydrogenase is presented isolated from Nocardia globerula that shows a unique substrate spectrum toward different prochiral aliphatic ketones and bulky ketoesters as well as thioesters. For example, the enzyme reduced ethyl 4-chloro-3-oxo butanoate with an ee > 99% to (S)-4-chloro-3-hydroxy butanoate. Very interesting is also the fact that 3-oxobutanoic acid tert-butylthioester is reduced with 49.4% of the maximal activity while the corresponding tert-butyloxyester is not reduced at all. Furthermore, it has to be mentioned that acetophenone, a standard substrate for many known alcohol dehydrogenases, is not reduced by this enzyme. The enzyme was purified from wild-type N. globerula cells, and the corresponding 915-bp-long gene was determined, cloned, expressed in Escherichia coli, and applied in biotransformations. The N. globerula alcohol dehydrogenase is a tetramer of about 135 kDa in size as determined from gel filtration. Its sequence is related to several hypothetical 3-hydroxyacyl-CoA dehydrogenases whose sequences were derived by whole-genome sequencing from bacterial sources as well as known mammalian 3-hydroxyacyl-CoA dehydrogenases and -hydroxyacyl-CoA dehydrogenases from different clostridiae.
Erscheinungsjahr
2010
Zeitschriftentitel
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Band
86
Ausgabe
6
Seite(n)
1813-1820
ISSN
0175-7598
eISSN
1432-0614
Page URI
https://pub.uni-bielefeld.de/record/2344767

Zitieren

Parkot J, Gröger H, Hummel W. Purification, cloning, and overexpression of an alcohol dehydrogenase from Nocardia globerula reducing aliphatic ketones and bulky ketoesters. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 2010;86(6):1813-1820.
Parkot, J., Gröger, H., & Hummel, W. (2010). Purification, cloning, and overexpression of an alcohol dehydrogenase from Nocardia globerula reducing aliphatic ketones and bulky ketoesters. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 86(6), 1813-1820. https://doi.org/10.1007/s00253-009-2385-x
Parkot, Julia, Gröger, Harald, and Hummel, Werner. 2010. “Purification, cloning, and overexpression of an alcohol dehydrogenase from Nocardia globerula reducing aliphatic ketones and bulky ketoesters”. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 86 (6): 1813-1820.
Parkot, J., Gröger, H., and Hummel, W. (2010). Purification, cloning, and overexpression of an alcohol dehydrogenase from Nocardia globerula reducing aliphatic ketones and bulky ketoesters. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 86, 1813-1820.
Parkot, J., Gröger, H., & Hummel, W., 2010. Purification, cloning, and overexpression of an alcohol dehydrogenase from Nocardia globerula reducing aliphatic ketones and bulky ketoesters. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 86(6), p 1813-1820.
J. Parkot, H. Gröger, and W. Hummel, “Purification, cloning, and overexpression of an alcohol dehydrogenase from Nocardia globerula reducing aliphatic ketones and bulky ketoesters”, APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 86, 2010, pp. 1813-1820.
Parkot, J., Gröger, H., Hummel, W.: Purification, cloning, and overexpression of an alcohol dehydrogenase from Nocardia globerula reducing aliphatic ketones and bulky ketoesters. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 86, 1813-1820 (2010).
Parkot, Julia, Gröger, Harald, and Hummel, Werner. “Purification, cloning, and overexpression of an alcohol dehydrogenase from Nocardia globerula reducing aliphatic ketones and bulky ketoesters”. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 86.6 (2010): 1813-1820.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A comparison of two novel alcohol dehydrogenase enzymes (ADH1 and ADH2) from the extreme halophile Haloferax volcanii.
Timpson LM, Liliensiek AK, Alsafadi D, Cassidy J, Sharkey MA, Liddell S, Allers T, Paradisi F., Appl Microbiol Biotechnol 97(1), 2013
PMID: 22526808

34 References

Daten bereitgestellt von Europe PubMed Central.

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
Biochemical characterization and crystal structure determination of human heart short chain L-3-hydroxyacyl-CoA dehydrogenase provide insights into catalytic mechanism.
Barycki JJ, O'Brien LK, Bratt JM, Zhang R, Sanishvili R, Strauss AW, Banaszak LJ., Biochemistry 38(18), 1999
PMID: 10231530

GN, FEMS Microbiol Rev 17(), 1995
Multiple sequence alignment with the Clustal series of programs.
Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD., Nucleic Acids Res. 31(13), 2003
PMID: 12824352
Biocatalytic ketone reduction--a powerful tool for the production of chiral alcohols--part I: processes with isolated enzymes.
Goldberg K, Schroer K, Lutz S, Liese A., Appl. Microbiol. Biotechnol. 76(2), 2007
PMID: 17516064
Enantioselective reduction of ketones with "designer cells" at high substrate concentrations: highly efficient access to functionalized optically active alcohols.
Groger H, Chamouleau F, Orologas N, Rollmann C, Drauz K, Hummel W, Weckbecker A, May O., Angew. Chem. Int. Ed. Engl. 45(34), 2006
PMID: 16858704

W, Adv Biochem Eng/Biotechnol 58(), 1997
Dehydrogenases for the synthesis of chiral compounds.
Hummel W, Kula MR., Eur. J. Biochem. 184(1), 1989
PMID: 2673781
Multiplicity and complexity of SDR and MDR enzymes.
Jornvall H., Adv. Exp. Med. Biol. 463(), 1999
PMID: 10352706

O, Coord Chem Rev 252(), 2008
The short-chain alcohol dehydrogenase superfamily: variations on a common theme.
Krozowski Z., J. Steroid Biochem. Mol. Biol. 51(3-4), 1994
PMID: 7981120
Characterization of the developmentally regulated Bacillus subtilis glucose dehydrogenase gene.
Lampel KA, Uratani B, Chaudhry GR, Ramaley RF, Rudikoff S., J. Bacteriol. 166(1), 1986
PMID: 3082854

RN, Enzyme Microb Technol 31(), 2002

RN, Curr Opin Drug Discovery Dev 6(), 2003

RN, Coord Chem Rev 252(), 2008
Biocatalysis for pharmaceutical intermediates: the future is now.
Pollard DJ, Woodley JM., Trends Biotechnol. 25(2), 2006
PMID: 17184862
Molecular characterization of microbial alcohol dehydrogenases.
Reid MF, Fewson CA., Crit. Rev. Microbiol. 20(1), 1994
PMID: 8185833
Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii.
Schute H, Flossdorf J, Sahm H, Kula MR., Eur. J. Biochem. 62(1), 1976
PMID: 1248477

S, Adv Biochem Eng/Biotechnol 58(), 1997
Chemoenzymatic synthesis of the chiral side-chain of statins: application of an alcohol dehydrogenase catalysed ketone reduction on a large scale.
Wolberg M, Filho MV, Bode S, Geilenkirchen P, Feldmann R, Liese A, Hummel W, Muller M., Bioprocess Biosyst Eng 31(3), 2008
PMID: 18288496
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 20054534
PubMed | Europe PMC

Suchen in

Google Scholar