Highly conserved progesterone 5 beta-reductase genes (P5 beta R) from 5 beta-cardenolide-free and 5 beta-cardenolide-producing angiosperms

Bauer P, Munkert J, Brydziun M, Burda E, Mueller-Uri F, Gröger H, Muller YA, Kreis W (2010)
PHYTOCHEMISTRY 71(13): 1495-1505.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Bauer, Peter; Munkert, Jennifer; Brydziun, Margareta; Burda, Edyta; Mueller-Uri, Frieder; Gröger, HaraldUniBi; Muller, Yves A.; Kreis, Wolfgang
Abstract / Bemerkung
Most cardenolides used in the therapy of cardiac insufficiency are 5 beta-configured and thus the stereo-specific reduction of the Delta(4,5)-double bond of a steroid precursor is a crucial step in their biosynthesis. This step is thought to be catalysed by progesterone 5 beta-reductases. We report here on the isolation of 11 progesterone 5 beta-reductase (P5 beta R) orthologues from 5 beta-cardenolide-free and 5 beta-cardenolide-producing plant species belonging to five different angiosperm orders (Brassicales, Gentianales, Lamiales, Malvales and Solanales). Amino acid sequences of the P5 beta R described here were highly conserved. They all contain certain motifs qualifying them as members of a class of stereo-selective enone reductases capable of reducing activated C=C double bonds by a 1,4-addition mechanism. Protein modeling revealed seven conserved amino acids in the substrate-binding/catalytic site of these enzymes which are all supposed to exhibit low substrate specificity. Eight P5 beta R genes isolated were expressed in Escherichia coli. Recombinant enzymes reduced progesterone stereo-specifically to 5 beta-pregane-3,20-dione. The progesterone 5 beta-reductases from Digitalis canariensis and Arabidopsis thaliana reduced activated C=C double bonds of molecules much smaller than progesterone. The specific role of progesterone 5 beta-reductases of P5 beta Rs in cardenolide metabolism is challenged because this class of enone reductases is widespread in higher plants, and they accept a wide range of enone substrates. (C) 2010 Elsevier Ltd. All rights reserved.
Erscheinungsjahr
2010
Zeitschriftentitel
PHYTOCHEMISTRY
Band
71
Ausgabe
13
Seite(n)
1495-1505
ISSN
0031-9422
Page URI
https://pub.uni-bielefeld.de/record/2344744

Zitieren

Bauer P, Munkert J, Brydziun M, et al. Highly conserved progesterone 5 beta-reductase genes (P5 beta R) from 5 beta-cardenolide-free and 5 beta-cardenolide-producing angiosperms. PHYTOCHEMISTRY. 2010;71(13):1495-1505.
Bauer, P., Munkert, J., Brydziun, M., Burda, E., Mueller-Uri, F., Gröger, H., Muller, Y. A., et al. (2010). Highly conserved progesterone 5 beta-reductase genes (P5 beta R) from 5 beta-cardenolide-free and 5 beta-cardenolide-producing angiosperms. PHYTOCHEMISTRY, 71(13), 1495-1505. https://doi.org/10.1016/j.phytochem.2010.06.004
Bauer, Peter, Munkert, Jennifer, Brydziun, Margareta, Burda, Edyta, Mueller-Uri, Frieder, Gröger, Harald, Muller, Yves A., and Kreis, Wolfgang. 2010. “Highly conserved progesterone 5 beta-reductase genes (P5 beta R) from 5 beta-cardenolide-free and 5 beta-cardenolide-producing angiosperms”. PHYTOCHEMISTRY 71 (13): 1495-1505.
Bauer, P., Munkert, J., Brydziun, M., Burda, E., Mueller-Uri, F., Gröger, H., Muller, Y. A., and Kreis, W. (2010). Highly conserved progesterone 5 beta-reductase genes (P5 beta R) from 5 beta-cardenolide-free and 5 beta-cardenolide-producing angiosperms. PHYTOCHEMISTRY 71, 1495-1505.
Bauer, P., et al., 2010. Highly conserved progesterone 5 beta-reductase genes (P5 beta R) from 5 beta-cardenolide-free and 5 beta-cardenolide-producing angiosperms. PHYTOCHEMISTRY, 71(13), p 1495-1505.
P. Bauer, et al., “Highly conserved progesterone 5 beta-reductase genes (P5 beta R) from 5 beta-cardenolide-free and 5 beta-cardenolide-producing angiosperms”, PHYTOCHEMISTRY, vol. 71, 2010, pp. 1495-1505.
Bauer, P., Munkert, J., Brydziun, M., Burda, E., Mueller-Uri, F., Gröger, H., Muller, Y.A., Kreis, W.: Highly conserved progesterone 5 beta-reductase genes (P5 beta R) from 5 beta-cardenolide-free and 5 beta-cardenolide-producing angiosperms. PHYTOCHEMISTRY. 71, 1495-1505 (2010).
Bauer, Peter, Munkert, Jennifer, Brydziun, Margareta, Burda, Edyta, Mueller-Uri, Frieder, Gröger, Harald, Muller, Yves A., and Kreis, Wolfgang. “Highly conserved progesterone 5 beta-reductase genes (P5 beta R) from 5 beta-cardenolide-free and 5 beta-cardenolide-producing angiosperms”. PHYTOCHEMISTRY 71.13 (2010): 1495-1505.

15 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Genome Assembly and Annotation of the Medicinal Plant Calotropis gigantea, a Producer of Anticancer and Antimalarial Cardenolides.
Hoopes GM, Hamilton JP, Kim J, Zhao D, Wiegert-Rininger K, Crisovan E, Buell CR., G3 (Bethesda) 8(2), 2018
PMID: 29237703
A multisubstrate reductase from Plantago major: structure-function in the short chain reductase superfamily.
Fellows R, Russo CM, Silva CS, Lee SG, Jez JM, Chisholm JD, Zubieta C, Nanao MH., Sci Rep 8(1), 2018
PMID: 30287897
Complex Sexual Deception in an Orchid Is Achieved by Co-opting Two Independent Biosynthetic Pathways for Pollinator Attraction.
Xu H, Bohman B, Wong DCJ, Rodriguez-Delgado C, Scaffidi A, Flematti GR, Phillips RD, Pichersky E, Peakall R., Curr Biol 27(13), 2017
PMID: 28625782
Identification and Characterization of the Iridoid Synthase Involved in Oleuropein Biosynthesis in Olive (Olea europaea) Fruits.
Alagna F, Geu-Flores F, Kries H, Panara F, Baldoni L, O'Connor SE, Osbourn A., J Biol Chem 291(11), 2016
PMID: 26709230
Transcriptome and Metabolite analysis reveal candidate genes of the cardiac glycoside biosynthetic pathway from Calotropis procera.
Pandey A, Swarnkar V, Pandey T, Srivastava P, Kanojiya S, Mishra DK, Tripathi V., Sci Rep 6(), 2016
PMID: 27703261
Iridoid synthase activity is common among the plant progesterone 5β-reductase family.
Munkert J, Pollier J, Miettinen K, Van Moerkercke A, Payne R, Müller-Uri F, Burlat V, O'Connor SE, Memelink J, Kreis W, Goossens A., Mol Plant 8(1), 2015
PMID: 25578278
Progesterone 5β-reductase genes of the Brassicaceae family as function-associated molecular markers.
Munkert J, Costa C, Budeanu O, Petersen J, Bertolucci S, Fischer G, Müller-Uri F, Kreis W., Plant Biol (Stuttg) 17(6), 2015
PMID: 26108256
Conversion of substrate analogs suggests a Michael cyclization in iridoid biosynthesis.
Lindner S, Geu-Flores F, Bräse S, Sherden NH, O'Connor SE., Chem Biol 21(11), 2014
PMID: 25444551
Expression dynamics of the Medicago truncatula transcriptome during the symbiotic interaction with Sinorhizobium meliloti: which role for nitric oxide?
Boscari A, Del Giudice J, Ferrarini A, Venturini L, Zaffini AL, Delledonne M, Puppo A., Plant Physiol 161(1), 2013
PMID: 23136381
Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions.
Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S., New Phytol 194(1), 2012
PMID: 22292897
An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis.
Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C, Nims E, Cui Y, O'Connor SE., Nature 492(7427), 2012
PMID: 23172143
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 20598327
PubMed | Europe PMC

Suchen in

Google Scholar