Asymmetric reduction of activated alkenes using an enoate reductase from Gluconobacter oxydans

Richter N, Gröger H, Hummel W (2011)
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 89(1): 79-89.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ;
Abstract / Bemerkung
A recombinant enoate reductase from Gluconobacter oxydans was heterologously expressed, purified, characterised and applied in the asymmetric reduction of activated alkenes. In addition to the determination of the kinetic properties, the major focus of this work was to utilise the enzyme in the biotransformation of different interesting compounds such as 3,5,5-trimethyl-2-cyclohexen-1,4-dione (ketoisophorone) and (E/Z)-3,7-dimethyl-2,6-octadienal (citral). The reaction proceeded with excellent stereoselectivities (>99% ee) as well as absolute chemo-and regioselectivity, only the activated C-C bond of citral was reduced by the enoate reductase, while non-activated C-C bond and carbonyl moiety remained untouched. The described strategy can be used for the production of enantiomerically pure building blocks, which are difficult to prepare by chemical means. In general, the results show that the investigated enoate reductase is a promising catalyst for the use in asymmetric C-C bond reductions.
Erscheinungsjahr
Zeitschriftentitel
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Band
89
Ausgabe
1
Seite(n)
79-89
ISSN
eISSN
PUB-ID

Zitieren

Richter N, Gröger H, Hummel W. Asymmetric reduction of activated alkenes using an enoate reductase from Gluconobacter oxydans. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 2011;89(1):79-89.
Richter, N., Gröger, H., & Hummel, W. (2011). Asymmetric reduction of activated alkenes using an enoate reductase from Gluconobacter oxydans. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 89(1), 79-89. doi:10.1007/s00253-010-2793-y
Richter, N., Gröger, H., and Hummel, W. (2011). Asymmetric reduction of activated alkenes using an enoate reductase from Gluconobacter oxydans. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 89, 79-89.
Richter, N., Gröger, H., & Hummel, W., 2011. Asymmetric reduction of activated alkenes using an enoate reductase from Gluconobacter oxydans. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 89(1), p 79-89.
N. Richter, H. Gröger, and W. Hummel, “Asymmetric reduction of activated alkenes using an enoate reductase from Gluconobacter oxydans”, APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 89, 2011, pp. 79-89.
Richter, N., Gröger, H., Hummel, W.: Asymmetric reduction of activated alkenes using an enoate reductase from Gluconobacter oxydans. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 89, 79-89 (2011).
Richter, Nina, Gröger, Harald, and Hummel, Werner. “Asymmetric reduction of activated alkenes using an enoate reductase from Gluconobacter oxydans”. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 89.1 (2011): 79-89.

14 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Cloning and characterization of enoate reductase with high β-ionone to dihydro-β-ionone bioconversion productivity.
Zhang X, Liao S, Cao F, Zhao L, Pei J, Tang F., BMC Biotechnol 18(1), 2018
PMID: 29743047
Structural insights into the ene-reductase synthesis of profens.
Waller J, Toogood HS, Karuppiah V, Rattray NJW, Mansell DJ, Leys D, Gardiner JM, Fryszkowska A, Ahmed ST, Bandichhor R, Reddy GP, Scrutton NS., Org Biomol Chem 15(20), 2017
PMID: 28485453
Modular and selective biosynthesis of gasoline-range alkanes.
Sheppard MJ, Kunjapur AM, Prather KLJ., Metab Eng 33(), 2016
PMID: 26556131
Enzymes useful for chiral compound synthesis: structural biology, directed evolution, and protein engineering for industrial use.
Kataoka M, Miyakawa T, Shimizu S, Tanokura M., Appl Microbiol Biotechnol 100(13), 2016
PMID: 27188776
An ene reductase from Clavispora lusitaniae for asymmetric reduction of activated alkenes.
Ni Y, Yu HL, Lin GQ, Xu JH., Enzyme Microb Technol 56(), 2014
PMID: 24564901
New generation of biocatalysts for organic synthesis.
Nestl BM, Hammer SC, Nebel BA, Hauer B., Angew Chem Int Ed Engl 53(12), 2014
PMID: 24520044
Chemoselective biocatalytic reduction of conjugated nitroalkenes: new application for an Escherichia coli BL21(DE3) expression strain.
Jovanovic P, Jeremic S, Djokic L, Savic V, Radivojevic J, Maslak V, Ivkovic B, Vasiljevic B, Nikodinovic-Runic J., Enzyme Microb Technol 60(), 2014
PMID: 24835095
Carbon-carbon double-bond reductases in nature.
Huang M, Hu H, Ma L, Zhou Q, Yu L, Zeng S., Drug Metab Rev 46(3), 2014
PMID: 24750117
Structural insights into substrate and coenzyme preference by SDR family protein Gox2253 from Gluconobater oxydans.
Yin B, Cui D, Zhang L, Jiang S, Machida S, Yuan YA, Wei D., Proteins 82(11), 2014
PMID: 24825769
Highly enantioselective reduction of α-methylated nitroalkenes.
Burda E, Reß T, Winkler T, Giese C, Kostrov X, Huber T, Hummel W, Gröger H., Angew Chem Int Ed Engl 52(35), 2013
PMID: 23893708
Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds.
Winkler CK, Tasnádi G, Clay D, Hall M, Faber K., J Biotechnol 162(4), 2012
PMID: 22498437

47 References

Daten bereitgestellt von Europe PubMed Central.

Biocatalysis with thermostable enzymes: structure and properties of a thermophilic 'ene'-reductase related to old yellow enzyme.
Adalbjornsson BV, Toogood HS, Fryszkowska A, Pudney CR, Jowitt TA, Leys D, Scrutton NS., Chembiochem 11(2), 2010
PMID: 19943268
X-ray structure of 12-oxophytodienoate reductase 1 provides structural insight into substrate binding and specificity within the family of OYE.
Breithaupt C, Strassner J, Breitinger U, Huber R, Macheroux P, Schaller A, Clausen T., Structure 9(5), 2001
PMID: 11377202

E, Adv Synth Catal 351(), 2009

DA, Angew Chem Int Ed 39(), 2000

C, Pure Appl Chem 62(), 1990

AUTHOR UNKNOWN, 0

M, Tetrahedron Asymmetr 17(), 2006

M, Angew Chem Int Ed 46(), 2007

M, Adv Synth Catal 350(), 2008

M, Eur J Org Chem 2008(), 2008

T, J Mol Catal B Enzym 59(), 2009

HE, Catal Today 22(), 1994
Enzyme promiscuity: mechanism and applications.
Hult K, Berglund P., Trends Biotechnol. 25(5), 2007
PMID: 17379338
Old Yellow Enzyme from Candida macedoniensis catalyzes the stereospecific reduction of the C=C bond of ketoisophorone.
Kataoka M, Kotaka A, Hasegawa A, Wada M, Yoshizumi A, Nakamori S, Shimizu S., Biosci. Biotechnol. Biochem. 66(12), 2002
PMID: 12596862
The 1.3 A crystal structure of the flavoprotein YqjM reveals a novel class of Old Yellow Enzymes.
Kitzing K, Fitzpatrick TB, Wilken C, Sawa J, Bourenkov GP, Macheroux P, Clausen T., J. Biol. Chem. 280(30), 2005
PMID: 15890652

WS, Angew Chem Int Ed 41(), 2002
Clustal W and Clustal X version 2.0.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG., Bioinformatics 23(21), 2007
PMID: 17846036

HGW, Helv Chim Acta 59(), 1976

BH, Angew Chem Int Ed 42(), 2003
Asymmetric 1,4-reductions of hindered beta-substituted cycloalkenones using catalytic SEGPHOS-ligated CuH.
Lipshutz BH, Servesko JM, Petersen TB, Papa PP, Lover AA., Org. Lett. 6(8), 2004
PMID: 15070315
Nucleotide sequence and chromosomal localization of the gene encoding the Old Yellow Enzyme from Kluyveromyces lactis.
Miranda M, Ramirez J, Guevara S, Ongay-Larios L, Pena A, Coria R., Yeast 11(5), 1995
PMID: 7597850

M, Microbiology 142(), 1996

A, J Mol Catal B Enzym 38(), 2006

A, Angew Chem Int Ed 46(), 2007

R, Angew Chem Int Ed 41(), 2002

T, J Org Chem 60(), 1995
Enoate reductases of Clostridia. Cloning, sequencing, and expression.
Rohdich F, Wiese A, Feicht R, Simon H, Bacher A., J. Biol. Chem. 276(8), 2000
PMID: 11060310
The cloning and expression of a gene encoding Old Yellow Enzyme from Saccharomyces carlsbergensis.
Saito K, Thiele DJ, Davio M, Lockridge O, Massey V., J. Biol. Chem. 266(31), 1991
PMID: 1939123
Vinyl ketone reduction by three distinct Gluconobacter oxydans 621H enzymes.
Schweiger P, Gross H, Wesener S, Deppenmeier U., Appl. Microbiol. Biotechnol. 80(6), 2008
PMID: 18629490

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
The occurrence of a novel NADH dehydrogenase, distinct from the old yellow enzyme, in Gluconobacter strains.
Shinagawa E, Ano Y, Adachi O, Matsushita K., Biosci. Biotechnol. Biochem. 72(1), 2008
PMID: 18175896
Old Yellow Enzyme. The discovery of multiple isozymes and a family of related proteins.
Stott K, Saito K, Thiele DJ, Massey V., J. Biol. Chem. 268(9), 1993
PMID: 8454584
A homolog of old yellow enzyme in tomato. Spectral properties and substrate specificity of the recombinant protein.
Strassner J, Furholz A, Macheroux P, Amrhein N, Schaller A., J. Biol. Chem. 274(49), 1999
PMID: 10574986
Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family.
Stuermer R, Hauer B, Hall M, Faber K., Curr Opin Chem Biol 11(2), 2007
PMID: 17353140

AF, J Catal 224(), 2004

O, Naturwissenschaften 20(), 1932

AUTHOR UNKNOWN, 0
'New uses for an Old Enzyme'--the Old Yellow Enzyme family of flavoenzymes.
Williams RE, Bruce NC., Microbiology (Reading, Engl.) 148(Pt 6), 2002
PMID: 12055282

Y, Agric Biol Chem 52(), 1988
Nitroreductase from Salmonella typhimurium: characterization and catalytic activity.
Yanto Y, Hall M, Bommarius AS., Org. Biomol. Chem. 8(8), 2010
PMID: 20449486

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 20717668
PubMed | Europe PMC

Suchen in

Google Scholar