Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy

Chan JW, Esposito AP, Talley CE, Hollars CW, Lane SM, Huser T (2004)
Analytical Chemistry 76(3): 599-603.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Chan, J. W.; Esposito, A. P.; Talley, C. E.; Hollars, C. W.; Lane, S. M.; Huser, ThomasUniBi
Abstract / Bemerkung
We demonstrate that optical trapping combined with confocal Raman spectroscopy using a single laser source is a powerful tool for the rapid identification of micrometersized particles in an aqueous environment. Optical trapping immobilizes the particle while maintaining it in the center of the laser beam path and within the laser focus, thus maximizing the collection of its Raman signals. The single particle is completely isolated from other particles and substrate surfaces, therefore eliminating any unwanted background signals and ensuring that information is collected only from the selected, individual particle. In this work, an inverted confocal Raman microscope is combined with optical trapping to probe and analyze bacterial spores in solution. Rapid, reagentless detection and identification of bacterial spores with no false positives from a complex mixed sample containing polystyrene and silica beads in aqueous suspension is demonstrated. In addition, the technique is used to analyze the relative concentration of each type of particle in the mixture. Our results show the feasibility for incorporating this technique in combination with a flow cytometric-type scheme in which the intrinsic Raman signatures of the particles are used instead of or in addition to fluorescent labels to identify cells, bacteria, and particles in a wide range of applications.
Erscheinungsjahr
2004
Zeitschriftentitel
Analytical Chemistry
Band
76
Ausgabe
3
Seite(n)
599-603
ISSN
0003-2700
eISSN
1520-6882
Page URI
https://pub.uni-bielefeld.de/record/2330695

Zitieren

Chan JW, Esposito AP, Talley CE, Hollars CW, Lane SM, Huser T. Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy. Analytical Chemistry. 2004;76(3):599-603.
Chan, J. W., Esposito, A. P., Talley, C. E., Hollars, C. W., Lane, S. M., & Huser, T. (2004). Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy. Analytical Chemistry, 76(3), 599-603. https://doi.org/10.1021/ac0350155
Chan, J. W., Esposito, A. P., Talley, C. E., Hollars, C. W., Lane, S. M., and Huser, Thomas. 2004. “Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy”. Analytical Chemistry 76 (3): 599-603.
Chan, J. W., Esposito, A. P., Talley, C. E., Hollars, C. W., Lane, S. M., and Huser, T. (2004). Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy. Analytical Chemistry 76, 599-603.
Chan, J.W., et al., 2004. Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy. Analytical Chemistry, 76(3), p 599-603.
J.W. Chan, et al., “Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy”, Analytical Chemistry, vol. 76, 2004, pp. 599-603.
Chan, J.W., Esposito, A.P., Talley, C.E., Hollars, C.W., Lane, S.M., Huser, T.: Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy. Analytical Chemistry. 76, 599-603 (2004).
Chan, J. W., Esposito, A. P., Talley, C. E., Hollars, C. W., Lane, S. M., and Huser, Thomas. “Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy”. Analytical Chemistry 76.3 (2004): 599-603.

55 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

In vitro antimicrobial susceptibility testing methods: agar dilution to 3D tissue-engineered models.
Schumacher A, Vranken T, Malhotra A, Arts JJC, Habibovic P., Eur J Clin Microbiol Infect Dis 37(2), 2018
PMID: 28871407
Surface-Enhanced Raman Scattering (SERS) in Microbiology: Illumination and Enhancement of the Microbial World.
Chisanga M, Muhamadali H, Ellis DI, Goodacre R., Appl Spectrosc 72(7), 2018
PMID: 29569946
Terahertz vibrational signature of bacterial spores arising from nanostructure decorated endospore surface.
Datta D, Stroscio MA, Dutta M, Zhang W, Brown ER., J Biophotonics 11(7), 2018
PMID: 29726101
Topic Review: Application of Raman Spectroscopy Characterization in Micro/Nano-Machining.
Xu Z, He Z, Song Y, Fu X, Rommel M, Luo X, Hartmaier A, Zhang J, Fang F., Micromachines (Basel) 9(7), 2018
PMID: 30424294
Surface-enhanced Raman spectroscopy introduced into the International Standard Organization (ISO) regulations as an alternative method for detection and identification of pathogens in the food industry.
Witkowska E, Korsak D, Kowalska A, Księżopolska-Gocalska M, Niedziółka-Jönsson J, Roźniecka E, Michałowicz W, Albrycht P, Podrażka M, Hołyst R, Waluk J, Kamińska A., Anal Bioanal Chem 409(6), 2017
PMID: 28004171
Recent advances in the use of microfluidic technologies for single cell analysis.
Murphy TW, Zhang Q, Naler LB, Ma S, Lu C., Analyst 143(1), 2017
PMID: 29170786
Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications.
Krafft C, Schie IW, Meyer T, Schmitt M, Popp J., Chem Soc Rev 45(7), 2016
PMID: 26497570
Rapid, accurate, and comparative differentiation of clinically and industrially relevant microorganisms via multiple vibrational spectroscopic fingerprinting.
Muhamadali H, Subaihi A, Mohammadtaheri M, Xu Y, Ellis DI, Ramanathan R, Bansal V, Goodacre R., Analyst 141(17), 2016
PMID: 27414261
Raman spectroscopy for physiological investigations of tissues and cells.
Huser T, Chan J., Adv Drug Deliv Rev 89(), 2015
PMID: 26144996
Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles.
Redding B, Schwab M, Pan YL., Sensors (Basel) 15(8), 2015
PMID: 26247952
Towards high-throughput microfluidic Raman-activated cell sorting.
Zhang Q, Zhang P, Gou H, Mou C, Huang WE, Yang M, Xu J, Ma B., Analyst 140(18), 2015
PMID: 26225617
Determination of lead ion removal from a flowing electrolyte in the presence of a magnetic field using Raman spectroscopy.
Rodríguez R, Rangel D, Vargas S, González M, Malagon K, Quintanilla F., Med Phys 42(11), 2015
PMID: 26520711
Vibrational spectroscopic methods for cytology and cellular research.
Clemens G, Hands JR, Dorling KM, Baker MJ., Analyst 139(18), 2014
PMID: 25028699
Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis.
Zhang D, Wang P, Slipchenko MN, Ben-Amotz D, Weiner AM, Cheng JX., Anal Chem 85(1), 2013
PMID: 23198914
Optical tweezers for medical diagnostics.
LaFratta CN., Anal Bioanal Chem 405(17), 2013
PMID: 23559336
Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments.
Dochow S, Krafft C, Neugebauer U, Bocklitz T, Henkel T, Mayer G, Albert J, Popp J., Lab Chip 11(8), 2011
PMID: 21340095
Raman microspectroscopy detects epigenetic modifications in living Jurkat leukemic cells.
Poplineau M, Trussardi-Régnier A, Happillon T, Dufer J, Manfait M, Bernard P, Piot O, Antonicelli F., Epigenomics 3(6), 2011
PMID: 22126296
Confocal Raman microscopy of optical-trapped particles in liquids.
Cherney DP, Harris JM., Annu Rev Anal Chem (Palo Alto Calif) 3(), 2010
PMID: 20636043
Optical manipulation for single-cell studies.
Ramser K, Hanstorp D., J Biophotonics 3(4), 2010
PMID: 19718682
Detection of doxorubicin-induced apoptosis of leukemic T-lymphocytes by laser tweezers Raman spectroscopy.
Moritz TJ, Taylor DS, Krol DM, Fritch J, Chan JW., Biomed Opt Express 1(4), 2010
PMID: 21258536
Raman tweezers and their application to the study of singly trapped eukaryotic cells.
Snook RD, Harvey TJ, Correia Faria E, Gardner P., Integr Biol (Camb) 1(1), 2009
PMID: 20023790
Classification of fixed urological cells using Raman tweezers.
Harvey TJ, Hughes C, Ward AD, Faria EC, Henderson A, Clarke NW, Brown MD, Snook RD, Gardner P., J Biophotonics 2(1-2), 2009
PMID: 19343685
Raman and CARS microspectroscopy of cells and tissues.
Krafft C, Dietzek B, Popp J., Analyst 134(6), 2009
PMID: 19475129
Raman spectroscopy of DNA packaging in individual human sperm cells distinguishes normal from abnormal cells.
Huser T, Orme CA, Hollars CW, Corzett MH, Balhorn R., J Biophotonics 2(5), 2009
PMID: 19373853
Single-shot detection of bacterial endospores via coherent Raman spectroscopy.
Pestov D, Wang X, Ariunbold GO, Murawski RK, Sautenkov VA, Dogariu A, Sokolov AV, Scully MO., Proc Natl Acad Sci U S A 105(2), 2008
PMID: 18184801
An integrated optofluidic platform for Raman-activated cell sorting.
Lau AY, Lee LP, Chan JW., Lab Chip 8(7), 2008
PMID: 18584087
Single-cell research: what determines its feasibility?
Sabelnikov A, Kempf CR., Anal Biochem 383(2), 2008
PMID: 18814839
Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers.
Harvey TJ, Faria EC, Henderson A, Gazi E, Ward AD, Clarke NW, Brown MD, Snook RD, Gardner P., J Biomed Opt 13(6), 2008
PMID: 19123651
Levels of Ca2+-dipicolinic acid in individual bacillus spores determined using microfluidic Raman tweezers.
Huang SS, Chen D, Pelczar PL, Vepachedu VR, Setlow P, Li YQ., J Bacteriol 189(13), 2007
PMID: 17468248
Monitoring dynamic protein expression in living E. coli. Bacterial cells by laser tweezers Raman spectroscopy.
Chan JW, Winhold H, Corzett MH, Ulloa JM, Cosman M, Balhorn R, Huser T., Cytometry A 71(7), 2007
PMID: 17458881
Raman spectroscopic discrimination of cell response to chemical and physical inactivation.
Escoriza MF, VanBriesen JM, Stewart S, Maier J., Appl Spectrosc 61(8), 2007
PMID: 17716399
Raman spectroscopic study of bacterial endospores.
De Gelder J, Scheldeman P, Leus K, Heyndrickx M, Vandenabeele P, Moens L, De Vos P., Anal Bioanal Chem 389(7-8), 2007
PMID: 17962923
Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ.
Sandt C, Smith-Palmer T, Pink J, Brennan L, Pink D., J Appl Microbiol 103(5), 2007
PMID: 17953591
Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells.
Chan JW, Taylor DS, Zwerdling T, Lane SM, Ihara K, Huser T., Biophys J 90(2), 2006
PMID: 16239327
Raman spectroscopy: the gateway into tomorrow's virology.
Lambert PJ, Whitman AG, Dyson OF, Akula SM., Virol J 3(), 2006
PMID: 16805914
A new approach to non-destructive analysis of biofilms by confocal Raman microscopy.
Pätzold R, Keuntje M, Anders-von Ahlften A., Anal Bioanal Chem 386(2), 2006
PMID: 16868726
Detection of bacteria by surface-enhanced Raman spectroscopy.
Sengupta A, Mujacic M, Davis EJ., Anal Bioanal Chem 386(5), 2006
PMID: 16933128
Studying bacterial metabolic states using Raman spectroscopy.
Escoriza MF, Vanbriesen JM, Stewart S, Maier J., Appl Spectrosc 60(9), 2006
PMID: 17002820
A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells.
Ramser K, Enger J, Goksör M, Hanstorp D, Logg K, Käll M., Lab Chip 5(4), 2005
PMID: 15791341
Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations.
Rösch P, Harz M, Schmitt M, Peschke KD, Ronneberger O, Burkhardt H, Motzkus HW, Lankers M, Hofer S, Thiele H, Popp J., Appl Environ Microbiol 71(3), 2005
PMID: 15746368
Spectroscopic analysis of Kaposi's sarcoma-associated herpesvirus infected cells by Raman tweezers.
Hamden KE, Bryan BA, Ford PW, Xie C, Li YQ, Akula SM., J Virol Methods 129(2), 2005
PMID: 15992938
Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography.
Zhang X, Yonzon CR, Young MA, Stuart DA, Van Duyne RP., IEE Proc Nanobiotechnol 152(6), 2005
PMID: 16441180
Single-cell microbiology: tools, technologies, and applications.
Brehm-Stecher BF, Johnson EA., Microbiol Mol Biol Rev 68(3), 2004
PMID: 15353569
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 14750852
PubMed | Europe PMC

Suchen in

Google Scholar