Intracellular pH sensors based on surface-enhanced Raman scattering

Talley CE, Jusinski L, Hollars CW, Lane SM, Huser T (2004)
Analytical Chemistry 76(23): 7064-7068.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Talley, C. E.; Jusinski, L.; Hollars, C. W.; Lane, S. M.; Huser, ThomasUniBi
Abstract / Bemerkung
We present the development of nanoscale pH sensors based on functionalized silver nanoparticles and surface-enhanced Raman scattering (SERS). The SERS spectrum from individual silver nanoparticle (50-80 nm in diameter) clusters functionalized with 4-mercaptobenzoic acid shows a characteristic response to the pH of the surrounding solution and is sensitive to pH changes in the range of 6-8. Measurements from nanoparticles incorporated in living Chinese hamster ovary cells demonstrate that the nanoparticle sensors retain their robust signal and sensitivity to pH when incorporated into a cell.
Erscheinungsjahr
2004
Zeitschriftentitel
Analytical Chemistry
Band
76
Ausgabe
23
Seite(n)
7064-7068
ISSN
0003-2700
eISSN
1520-6882
Page URI
https://pub.uni-bielefeld.de/record/2330675

Zitieren

Talley CE, Jusinski L, Hollars CW, Lane SM, Huser T. Intracellular pH sensors based on surface-enhanced Raman scattering. Analytical Chemistry. 2004;76(23):7064-7068.
Talley, C. E., Jusinski, L., Hollars, C. W., Lane, S. M., & Huser, T. (2004). Intracellular pH sensors based on surface-enhanced Raman scattering. Analytical Chemistry, 76(23), 7064-7068. https://doi.org/10.1021/ac049093j
Talley, C. E., Jusinski, L., Hollars, C. W., Lane, S. M., and Huser, Thomas. 2004. “Intracellular pH sensors based on surface-enhanced Raman scattering”. Analytical Chemistry 76 (23): 7064-7068.
Talley, C. E., Jusinski, L., Hollars, C. W., Lane, S. M., and Huser, T. (2004). Intracellular pH sensors based on surface-enhanced Raman scattering. Analytical Chemistry 76, 7064-7068.
Talley, C.E., et al., 2004. Intracellular pH sensors based on surface-enhanced Raman scattering. Analytical Chemistry, 76(23), p 7064-7068.
C.E. Talley, et al., “Intracellular pH sensors based on surface-enhanced Raman scattering”, Analytical Chemistry, vol. 76, 2004, pp. 7064-7068.
Talley, C.E., Jusinski, L., Hollars, C.W., Lane, S.M., Huser, T.: Intracellular pH sensors based on surface-enhanced Raman scattering. Analytical Chemistry. 76, 7064-7068 (2004).
Talley, C. E., Jusinski, L., Hollars, C. W., Lane, S. M., and Huser, Thomas. “Intracellular pH sensors based on surface-enhanced Raman scattering”. Analytical Chemistry 76.23 (2004): 7064-7068.

79 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing.
Shen Y, Liang L, Zhang S, Huang D, Zhang J, Xu S, Liang C, Xu W., Nanoscale 10(4), 2018
PMID: 29239454
SERS Sensors: Recent Developments and a Generalized Classification Scheme Based on the Signal Origin.
Gu X, Trujillo MJ, Olson JE, Camden JP., Annu Rev Anal Chem (Palo Alto Calif) 11(1), 2018
PMID: 29547340
Large-scale nanoporous metal-coated silica aerogels for high SERS effect improvement.
Kim C, Baek S, Ryu Y, Kim Y, Shin D, Lee CW, Park W, Urbas AM, Kang G, Kim K., Sci Rep 8(1), 2018
PMID: 30310142
Bioconjugation strategy for cell surface labelling with gold nanostructures designed for highly localized pH measurement.
Puppulin L, Hosogi S, Sun H, Matsuo K, Inui T, Kumamoto Y, Suzaki T, Tanaka H, Marunaka Y., Nat Commun 9(1), 2018
PMID: 30538244
Biological pH sensing based on the environmentally friendly Raman technique through a polyaniline probe.
Li S, Liu Z, Su C, Chen H, Fei X, Guo Z., Anal Bioanal Chem 409(5), 2017
PMID: 27838754
Multi-functional, thiophenol-based surface chemistry for surface-enhanced Raman spectroscopy.
Sun F, Galvan DD, Jain P, Yu Q., Chem Commun (Camb) 53(33), 2017
PMID: 28379251
Silica-encapsulated gold nanoparticle dimers for organelle-targeted cellular delivery.
Cong VT, Ly NH, Son SJ, Min J, Joo SW., Chem Commun (Camb) 53(36), 2017
PMID: 28426043
Surface-enhanced hyper Raman hyperspectral imaging and probing in animal cells.
Heiner Z, Gühlke M, Živanović V, Madzharova F, Kneipp J., Nanoscale 9(23), 2017
PMID: 28574069
In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates.
Fortuni B, Inose T, Uezono S, Toyouchi S, Umemoto K, Sekine S, Fujita Y, Ricci M, Lu G, Masuhara A, Hutchison JA, Latterini L, Uji-I H., Chem Commun (Camb) 53(82), 2017
PMID: 28920592
Real-time dynamic SERS detection of galectin using glycan-decorated gold nanoparticles.
Langer J, García I, Liz-Marzán LM., Faraday Discuss 205(), 2017
PMID: 28880321
SERS monitoring the dynamics of local pH in lysosome of living cells during photothermal therapy.
Luo R, Li Y, Zhou Q, Zheng J, Ma D, Tang P, Yang S, Qing Z, Yang R., Analyst 141(11), 2016
PMID: 27146095
Highly stable SERS pH nanoprobes produced by co-solvent controlled AuNP aggregation.
Wei H, Willner MR, Marr LC, Vikesland PJ., Analyst 141(17), 2016
PMID: 27143623
Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy.
Taylor J, Huefner A, Li L, Wingfield J, Mahajan S., Analyst 141(17), 2016
PMID: 27479539
Current achievements of nanoparticle applications in developing optical sensing and imaging techniques.
Choi JR, Shin DM, Song H, Lee D, Kim K., Nano Converg 3(1), 2016
PMID: 28191440
Gold Nanoparticles in Single-Cell Analysis for Surface Enhanced Raman Scattering.
Altunbek M, Kuku G, Culha M., Molecules 21(12), 2016
PMID: 27897986
Plasmon-enhanced optical sensors: a review.
Li M, Cushing SK, Wu N., Analyst 140(2), 2015
PMID: 25365823
The critical importance of gap modes in surface enhanced Raman scattering.
Futamata M, Ishikura M, Iida C, Handa S., Faraday Discuss 178(), 2015
PMID: 25778684
SERS-based monitoring of the intracellular pH in endothelial cells: the influence of the extracellular environment and tumour necrosis factor-α.
Jaworska A, Jamieson LE, Malek K, Campbell CJ, Choo J, Chlopicki S, Baranska M., Analyst 140(7), 2015
PMID: 25485622
Vibrational spectroscopy and density functional theory study of 4-mercaptobenzoic acid.
Li R, Lv H, Zhang X, Liu P, Chen L, Cheng J, Zhao B., Spectrochim Acta A Mol Biomol Spectrosc 148(), 2015
PMID: 25913136
Functionalized plasmonic nanostructure arrays for direct and accurate mapping extracellular pH of living cells in complex media using SERS.
Sun F, Zhang P, Bai T, David Galvan D, Hung HC, Zhou N, Jiang S, Yu Q., Biosens Bioelectron 73(), 2015
PMID: 26071692
Single-cell intracellular nano-pH probes.
Özel RE, Lohith A, Mak WH, Pourmand N., RSC Adv 5(65), 2015
PMID: 27708772
A General Method for Solvent Exchange of Plasmonic Nanoparticles and Self-Assembly into SERS-Active Monolayers.
Serrano-Montes AB, Jimenez de Aberasturi D, Langer J, Giner-Casares JJ, Scarabelli L, Herrero A, Liz-Marzán LM., Langmuir 31(33), 2015
PMID: 26258732
Towards high-throughput microfluidic Raman-activated cell sorting.
Zhang Q, Zhang P, Gou H, Mou C, Huang WE, Yang M, Xu J, Ma B., Analyst 140(18), 2015
PMID: 26225617
Combined near-infrared excited SEHRS and SERS spectra of pH sensors using silver nanostructures.
Gühlke M, Heiner Z, Kneipp J., Phys Chem Chem Phys 17(39), 2015
PMID: 26377486
Sensitive SERS-pH sensing in biological media using metal carbonyl functionalized planar substrates.
Kong KV, Dinish US, Lau WK, Olivo M., Biosens Bioelectron 54(), 2014
PMID: 24269755
pH-controllable drug carrier with SERS activity for targeting cancer cells.
Fang W, Wang Z, Zong S, Chen H, Zhu D, Zhong Y, Cui Y., Biosens Bioelectron 57(), 2014
PMID: 24525050
A SERS-based pH sensor utilizing 3-amino-5-mercapto-1,2,4-triazole functionalized Ag nanoparticles.
Piotrowski P, Wrzosek B, Królikowska A, Bukowska J., Analyst 139(5), 2014
PMID: 24409451
SERS-fluorescence joint spectral encoded magnetic nanoprobes for multiplex cancer cell separation.
Wang Z, Zong S, Chen H, Wang C, Xu S, Cui Y., Adv Healthc Mater 3(11), 2014
PMID: 24862088
A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals.
Chen P, Wang Z, Zong S, Chen H, Zhu D, Zhong Y, Cui Y., Anal Bioanal Chem 406(25), 2014
PMID: 25120182
Emerging technology: applications of Raman spectroscopy for prostate cancer.
Kast RE, Tucker SC, Killian K, Trexler M, Honn KV, Auner GW., Cancer Metastasis Rev 33(2-3), 2014
PMID: 24510129
A graphene-based physiometer array for the analysis of single biological cells.
Paulus GL, Nelson JT, Lee KY, Wang QH, Reuel NF, Grassbaugh BR, Kruss S, Landry MP, Kang JW, Vander Ende E, Zhang J, Mu B, Dasari RR, Opel CF, Wittrup KD, Strano MS., Sci Rep 4(), 2014
PMID: 25359450
Recent developments and future directions in SERS for bioanalysis.
Harper MM, McKeating KS, Faulds K., Phys Chem Chem Phys 15(15), 2013
PMID: 23318580
Acoustically controlled enhancement of molecular sensing to assess oxidative stress in cells.
Reboud J, Auchinvole C, Syme CD, Wilson R, Cooper JM., Chem Commun (Camb) 49(28), 2013
PMID: 23459663
Plasmonic nanoprobes for intracellular sensing and imaging.
Yuan H, Register JK, Wang HN, Fales AM, Liu Y, Vo-Dinh T., Anal Bioanal Chem 405(19), 2013
PMID: 23665636
Metal nanoparticles for nano-imaging and nano-analysis.
Ando J, Yano TA, Fujita K, Kawata S., Phys Chem Chem Phys 15(33), 2013
PMID: 23861007
Analysis of intracellular enzyme activity by surface enhanced Raman scattering.
Stevenson R, McAughtrie S, Senior L, Stokes RJ, McGachy H, Tetley L, Nativo P, Brewer JM, Alexander J, Faulds K, Graham D., Analyst 138(21), 2013
PMID: 24003438
Distinguishing breast cancer cells using surface-enhanced Raman scattering.
Yang J, Wang Z, Zong S, Song C, Zhang R, Cui Y., Anal Bioanal Chem 402(3), 2012
PMID: 22124755
The concept of a near-field Raman probe.
Bortchagovsky EG, Fischer UC., Nanoscale 4(3), 2012
PMID: 22215242
Nanomaterials in complex biological systems: insights from Raman spectroscopy.
Drescher D, Kneipp J., Chem Soc Rev 41(17), 2012
PMID: 22782372
Novel optical nanosensors for probing and imaging live cells.
Kneipp J, Kneipp H, Wittig B, Kneipp K., Nanomedicine 6(2), 2010
PMID: 19699322
Plasmonic nanoprobes for SERS biosensing and bioimaging.
Vo-Dinh T, Wang HN, Scaffidi J., J Biophotonics 3(1-2), 2010
PMID: 19517422
Mapping local pH in live cells using encapsulated fluorescent SERS nanotags.
Pallaoro A, Braun GB, Reich NO, Moskovits M., Small 6(5), 2010
PMID: 20183812
Synthesis and characterization of pH sensitive carboxySNARF-1 nanoreactors.
Chen YC, Ostafin A, Mizukami H., Nanotechnology 21(21), 2010
PMID: 20431200
Nanoparticles-based strategies for DNA, protein and cell sensors.
Merkoçi A., Biosens Bioelectron 26(4), 2010
PMID: 20678915
SERS nanosensors that report pH of endocytic compartments during FcεRI transit.
Nowak-Lovato KL, Wilson BS, Rector KD., Anal Bioanal Chem 398(5), 2010
PMID: 20842349
SERS-based plasmonic nanobiosensing in single living cells.
Scaffidi JP, Gregas MK, Seewaldt V, Vo-Dinh T., Anal Bioanal Chem 393(4), 2009
PMID: 19066865
Optical nanoparticle sensors for quantitative intracellular imaging.
Lee YK, Kopelman R., Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(1), 2009
PMID: 20049782
Nanoparticle PEBBLE sensors in live cells and in vivo.
Lee YE, Smith R, Kopelman R., Annu Rev Anal Chem (Palo Alto Calif) 2(), 2009
PMID: 20098636
Interaction of gold nanoparticles with mitochondria.
Karataş OF, Sezgin E, Aydin O, Culha M., Colloids Surf B Biointerfaces 71(2), 2009
PMID: 19329288
Targeted surface-enhanced Raman scattering nanosensors for whole-cell pH imagery.
Nowak-Lovato KL, Rector KD., Appl Spectrosc 63(4), 2009
PMID: 19366503
SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared Imaging and Photothermal Heating.
von Maltzahn G, Centrone A, Park JH, Ramanathan R, Sailor MJ, Hatton TA, Bhatia SN., Adv Mater 21(31), 2009
PMID: 20174478
Applications of fiber-optics-based nanosensors to drug discovery.
Vo-Dinh T, Scaffidi J, Gregas M, Zhang Y, Seewaldt V., Expert Opin Drug Discov 4(8), 2009
PMID: 23496274
SERS--a single-molecule and nanoscale tool for bioanalytics.
Kneipp J, Kneipp H, Kneipp K., Chem Soc Rev 37(5), 2008
PMID: 18443689
Intracellular applications of analytical SERS spectroscopy and multispectral imaging.
Chourpa I, Lei FH, Dubois P, Manfait M, Sockalingum GD., Chem Soc Rev 37(5), 2008
PMID: 18443684
Tailoring plasmonic substrates for surface enhanced spectroscopies.
Lal S, Grady NK, Kundu J, Levin CS, Lassiter JB, Halas NJ., Chem Soc Rev 37(5), 2008
PMID: 18443675
Synthesis and characterization of CN-modified protein analogues as potential vibrational contrast agents.
Noestheden M, Hu Q, Tay LL, Tonary AM, Stolow A, MacKenzie R, Tanha J, Pezacki JP., Bioorg Chem 35(3), 2007
PMID: 17316745
Intracellularly grown gold nanoparticles as potential surface-enhanced Raman scattering probes.
Shamsaie A, Jonczyk M, Sturgis J, Paul Robinson J, Irudayaraj J., J Biomed Opt 12(2), 2007
PMID: 17477701
Single nanoparticle based optical pH probe.
Jensen RA, Sherin J, Emory SR., Appl Spectrosc 61(8), 2007
PMID: 17716401
Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro.
Notingher I, Hench LL., Expert Rev Med Devices 3(2), 2006
PMID: 16515388

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 15571360
PubMed | Europe PMC

Suchen in

Google Scholar