Raman spectroscopic analysis of biochemical changes in individual triglyceride-rich lipoproteins in the pre- and postprandial state

Chan JW, Motton D, Rutledge JC, Keim NL, Huser T (2005)
Analytical Chemistry 77(18): 5870-5876.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
Individual triglyceride-rich lipoprotein (TGRL) particles derived from human volunteers are nondestructively analyzed by laser tweezers Raman microspectroscopy, and information on their composition and distribution is obtained. The Raman signature of single optically trapped very low-density lipoproteins (VLDL), a subclass of TGRL, which play an important role in cardiovascular disease, exhibits distinct peaks associated with molecular vibrations of fatty acids, proteins, lipids, and structural rear-rangements of lipids. Our analysis of pre- and postprandial VLDL exhibits the signature of biochemical changes in individual lipoprotein particles following the consumption of meals. Interaction of VLDL with endothelium leads to the breakdown of complex triacylglycerols and the formation of a highly ordered core of free saturated fatty acids in the particle. A particle distribution analysis reveals trends in the degree to which this process has occurred in particles at different times during the postprandial period. Differences in particle distributions based on the different ratios of polyunsaturated to saturated fats in the consumed meals are also easily discerned. Individual lipoprotein particles hydrolyzed in vitro through addition of lipoprotein lipase (LpL) exhibit strikingly similar changes in their Raman spectra. These results demonstrate the feasibility of monitoring the dynamics of lipid metabolism of individual TGRL particles as they interact with LpL in the endothelial cell wall using Raman spectroscopy.
Erscheinungsjahr
Zeitschriftentitel
Analytical Chemistry
Band
77
Zeitschriftennummer
18
Seite
5870-5876
ISSN
eISSN
PUB-ID

Zitieren

Chan JW, Motton D, Rutledge JC, Keim NL, Huser T. Raman spectroscopic analysis of biochemical changes in individual triglyceride-rich lipoproteins in the pre- and postprandial state. Analytical Chemistry. 2005;77(18):5870-5876.
Chan, J. W., Motton, D., Rutledge, J. C., Keim, N. L., & Huser, T. (2005). Raman spectroscopic analysis of biochemical changes in individual triglyceride-rich lipoproteins in the pre- and postprandial state. Analytical Chemistry, 77(18), 5870-5876. doi:10.1021/ac050692f
Chan, J. W., Motton, D., Rutledge, J. C., Keim, N. L., and Huser, T. (2005). Raman spectroscopic analysis of biochemical changes in individual triglyceride-rich lipoproteins in the pre- and postprandial state. Analytical Chemistry 77, 5870-5876.
Chan, J.W., et al., 2005. Raman spectroscopic analysis of biochemical changes in individual triglyceride-rich lipoproteins in the pre- and postprandial state. Analytical Chemistry, 77(18), p 5870-5876.
J.W. Chan, et al., “Raman spectroscopic analysis of biochemical changes in individual triglyceride-rich lipoproteins in the pre- and postprandial state”, Analytical Chemistry, vol. 77, 2005, pp. 5870-5876.
Chan, J.W., Motton, D., Rutledge, J.C., Keim, N.L., Huser, T.: Raman spectroscopic analysis of biochemical changes in individual triglyceride-rich lipoproteins in the pre- and postprandial state. Analytical Chemistry. 77, 5870-5876 (2005).
Chan, J. W., Motton, D., Rutledge, J. C., Keim, N. L., and Huser, Thomas. “Raman spectroscopic analysis of biochemical changes in individual triglyceride-rich lipoproteins in the pre- and postprandial state”. Analytical Chemistry 77.18 (2005): 5870-5876.

34 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Comparison of FTIR-ATR and Raman spectroscopy in determination of VLDL triglycerides in blood serum with PLS regression.
Oleszko A, Hartwich J, Wójtowicz A, Gąsior-Głogowska M, Huras H, Komorowska M., Spectrochim Acta A Mol Biomol Spectrosc 183(), 2017
PMID: 28454077
Single cell analysis in native tissue: Quantification of the retinoid content of hepatic stellate cells.
Galler K, Requardt RP, Glaser U, Markwart R, Bocklitz T, Bauer M, Popp J, Neugebauer U., Sci Rep 6(), 2016
PMID: 27063397
Postprandial Inflammatory Responses and Free Fatty Acids in Plasma of Adults Who Consumed a Moderately High-Fat Breakfast with and without Blueberry Powder in a Randomized Placebo-Controlled Trial.
Ono-Moore KD, Snodgrass RG, Huang S, Singh S, Freytag TL, Burnett DJ, Bonnel EL, Woodhouse LR, Zunino SJ, Peerson JM, Lee JY, Rutledge JC, Hwang DH., J Nutr 146(7), 2016
PMID: 27306892
Hepatic cirrhosis and recovery as reflected by Raman spectroscopy: information revealed by statistical analysis might lead to a prognostic biomarker.
Galler K, Fröhlich E, Kortgen A, Bauer M, Popp J, Neugebauer U., Anal Bioanal Chem 408(28), 2016
PMID: 27624765
Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging.
Tirinato L, Liberale C, Di Franco S, Candeloro P, Benfante A, La Rocca R, Potze L, Marotta R, Ruffilli R, Rajamanickam VP, Malerba M, De Angelis F, Falqui A, Carbone E, Todaro M, Medema JP, Stassi G, Di Fabrizio E., Stem Cells 33(1), 2015
PMID: 25186497
Raman spectroscopy for physiological investigations of tissues and cells.
Huser T, Chan J., Adv Drug Deliv Rev 89(), 2015
PMID: 26144996
High-resolution optical spectroscopy using multimode interference in a compact tapered fibre.
Wan NH, Meng F, Schröder T, Shiue RJ, Chen EH, Englund D., Nat Commun 6(), 2015
PMID: 26204350
Complexity of fatty acid distribution inside human macrophages on single cell level using Raman micro-spectroscopy.
Stiebing C, Matthäus C, Krafft C, Keller AA, Weber K, Lorkowski S, Popp J., Anal Bioanal Chem 406(27), 2014
PMID: 24939132
Exploitation of the hepatic stellate cell Raman signature for their detection in native tissue samples.
Galler K, Schleser F, Fröhlich E, Requardt RP, Kortgen A, Bauer M, Popp J, Neugebauer U., Integr Biol (Camb) 6(10), 2014
PMID: 25145462
Optical tweezers for medical diagnostics.
LaFratta CN., Anal Bioanal Chem 405(17), 2013
PMID: 23559336
Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by comparative Raman spectroscopy and gas chromatography.
Schie IW, Nolte L, Pedersen TL, Smith Z, Wu J, Yahiatène I, Newman JW, Huser T., Analyst 138(21), 2013
PMID: 24000336
Inflammasome-mediated secretion of IL-1β in human monocytes through TLR2 activation; modulation by dietary fatty acids.
Snodgrass RG, Huang S, Choi IW, Rutledge JC, Hwang DH., J Immunol 191(8), 2013
PMID: 24043885
A novel mouse model of nonalcoholic steatohepatitis with significant insulin resistance.
Adkins Y, Schie IW, Fedor D, Reddy A, Nguyen S, Zhou P, Kelley DS, Wu J., Lab Invest 93(12), 2013
PMID: 24145238
IRF-1 and miRNA126 modulate VCAM-1 expression in response to a high-fat meal.
Sun C, Alkhoury K, Wang YI, Foster GA, Radecke CE, Tam K, Edwards CM, Facciotti MT, Armstrong EJ, Knowlton AA, Newman JW, Passerini AG, Simon SI., Circ Res 111(8), 2012
PMID: 22874466
Postprandial apoE isoform and conformational changes associated with VLDL lipolysis products modulate monocyte inflammation.
den Hartigh LJ, Altman R, Hutchinson R, Petrlova J, Budamagunta MS, Tetali SD, Lagerstedt JO, Voss JC, Rutledge JC., PLoS One 7(11), 2012
PMID: 23209766
Endothelial inflammation correlates with subject triglycerides and waist size after a high-fat meal.
Wang YI, Schulze J, Raymond N, Tomita T, Tam K, Simon SI, Passerini AG., Am J Physiol Heart Circ Physiol 300(3), 2011
PMID: 21169396
Lipid-cell interactions in human monocytes investigated by doubly-resonant coherent anti-Stokes Raman scattering microscopy.
Weeks T, Schie I, den Hartigh LJ, Rutledge JC, Huser T., J Biomed Opt 16(2), 2011
PMID: 21361680
Confocal Raman microscopy of optical-trapped particles in liquids.
Cherney DP, Harris JM., Annu Rev Anal Chem (Palo Alto Calif) 3(), 2010
PMID: 20636043
Fatty acids from very low-density lipoprotein lipolysis products induce lipid droplet accumulation in human monocytes.
den Hartigh LJ, Connolly-Rohrbach JE, Fore S, Huser TR, Rutledge JC., J Immunol 184(7), 2010
PMID: 20208007
FT-IR spectroscopy of lipoproteins--a comparative study.
Krilov D, Balarin M, Kosović M, Gamulin O, Brnjas-Kraljević J., Spectrochim Acta A Mol Biomol Spectrosc 73(4), 2009
PMID: 19414281
Raman spectroscopy of DNA packaging in individual human sperm cells distinguishes normal from abnormal cells.
Huser T, Orme CA, Hollars CW, Corzett MH, Balhorn R., J Biophotonics 2(5), 2009
PMID: 19373853
Physico-chemical characterization of polylipid nanoparticles for gene delivery to the liver.
Nyunt MT, Dicus CW, Cui YY, Yappert MC, Huser TR, Nantz MH, Wu J., Bioconjug Chem 20(11), 2009
PMID: 19860429
An integrated optofluidic platform for Raman-activated cell sorting.
Lau AY, Lee LP, Chan JW., Lab Chip 8(7), 2008
PMID: 18584087
Investigations of thermotropic phase behavior of newly developed synthetic PEGylated lipids using Raman spectro-microscopy.
Bista RK, Bruch RF, Covington AM, Sorger A, Gerstmann T, Otto A., Biopolymers 89(11), 2008
PMID: 18615661
Triglyceride-rich lipoproteins prime aortic endothelium for an enhanced inflammatory response to tumor necrosis factor-alpha.
Ting HJ, Stice JP, Schaff UY, Hui DY, Rutledge JC, Knowlton AA, Passerini AG, Simon SI., Circ Res 100(3), 2007
PMID: 17234968
Monitoring dynamic protein expression in living E. coli. Bacterial cells by laser tweezers Raman spectroscopy.
Chan JW, Winhold H, Corzett MH, Ulloa JM, Cosman M, Balhorn R, Huser T., Cytometry A 71(7), 2007
PMID: 17458881

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 16159116
PubMed | Europe PMC

Suchen in

Google Scholar