Fast, flexible algorithm for calculating photon correlations

Laurence TA, Fore S, Huser T (2006)
Optics Letters 31(6): 829-831.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Laurence, T. A.; Fore, S.; Huser, ThomasUniBi
Abstract / Bemerkung
We introduce a new algorithm for computing correlations of photon arrival time data acquired in single-molecule fluorescence spectroscopy and fluorescence correlation spectroscopy (FCS). The algorithm is based on rewriting the correlation as a counting operation on photon pairs and can be used with arbitrary bin widths and spacing. The flexibility of the algorithm is demonstrated by use of FCS simulations and single-molecule photon antibunching experiments. Execution speed is comparable to the commonly used multiple-tau correlation technique. Wide bin spacings are possible that allow for real-time software calculation of correlations, even for high count rates. (c) 2006 Optical Society of America.
Erscheinungsjahr
2006
Zeitschriftentitel
Optics Letters
Band
31
Ausgabe
6
Seite(n)
829-831
ISSN
0146-9592
eISSN
1539-4794
Page URI
https://pub.uni-bielefeld.de/record/2330578

Zitieren

Laurence TA, Fore S, Huser T. Fast, flexible algorithm for calculating photon correlations. Optics Letters. 2006;31(6):829-831.
Laurence, T. A., Fore, S., & Huser, T. (2006). Fast, flexible algorithm for calculating photon correlations. Optics Letters, 31(6), 829-831. https://doi.org/10.1364/OL.31.000829
Laurence, T. A., Fore, S., and Huser, Thomas. 2006. “Fast, flexible algorithm for calculating photon correlations”. Optics Letters 31 (6): 829-831.
Laurence, T. A., Fore, S., and Huser, T. (2006). Fast, flexible algorithm for calculating photon correlations. Optics Letters 31, 829-831.
Laurence, T.A., Fore, S., & Huser, T., 2006. Fast, flexible algorithm for calculating photon correlations. Optics Letters, 31(6), p 829-831.
T.A. Laurence, S. Fore, and T. Huser, “Fast, flexible algorithm for calculating photon correlations”, Optics Letters, vol. 31, 2006, pp. 829-831.
Laurence, T.A., Fore, S., Huser, T.: Fast, flexible algorithm for calculating photon correlations. Optics Letters. 31, 829-831 (2006).
Laurence, T. A., Fore, S., and Huser, Thomas. “Fast, flexible algorithm for calculating photon correlations”. Optics Letters 31.6 (2006): 829-831.

21 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature.
Exarhos AL, Hopper DA, Patel RN, Doherty MW, Bassett LC., Nat Commun 10(1), 2019
PMID: 30644413
Optical crosstalk in SPAD arrays for high-throughput single-molecule fluorescence spectroscopy.
Ingargiola A, Segal M, Gulinatti A, Rech I, Labanca I, Maccagnani P, Ghioni M, Weiss S, Michalet X., Nucl Instrum Methods Phys Res A 9(12), 2018
PMID: 31223178
Ground-state proton transfer kinetics in green fluorescent protein.
Oltrogge LM, Wang Q, Boxer SG., Biochemistry 53(37), 2014
PMID: 25184668
High countrate real-time FCS using F2Cor.
Schaub E., Opt Express 21(20), 2013
PMID: 24104267
F2Cor: fast 2-stage correlation algorithm for FCS and DLS.
Schaub E., Opt Express 20(3), 2012
PMID: 22330459
The spectroscopic basis of fluorescence triple correlation spectroscopy.
Ridgeway WK, Millar DP, Williamson JR., J Phys Chem B 116(6), 2012
PMID: 22229664
FPGA implementation of a 32x32 autocorrelator array for analysis of fast image series.
Buchholz J, Krieger JW, Mocsár G, Kreith B, Charbon E, Vámosi G, Kebschull U, Langowski J., Opt Express 20(16), 2012
PMID: 23038328
Stoichiometry of reconstituted high-density lipoproteins in the hydrated state determined by photon antibunching.
Ly S, Petrlova J, Huser T, Fore S, Gao T, Voss J, Laurence TA., Biophys J 101(4), 2011
PMID: 21843489
High-throughput single-molecule fluorescence spectroscopy using parallel detection.
Michalet X, Colyer RA, Scalia G, Kim T, Levi M, Aharoni D, Cheng A, Guerrieri F, Arisaka K, Millaud J, Rech I, Resnati D, Marangoni S, Gulinatti A, Ghioni M, Tisa S, Zappa F, Cova S, Weiss S., Proc SPIE Int Soc Opt Eng 7608(76082d), 2010
PMID: 21625288
High-throughput multispot single-molecule spectroscopy.
Colyer RA, Scalia G, Kim T, Rech I, Resnati D, Marangoni S, Ghioni M, Cova S, Weiss S, Michalet X., Proc SPIE Int Soc Opt Eng 7571(), 2010
PMID: 21643532
High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array.
Colyer RA, Scalia G, Rech I, Gulinatti A, Ghioni M, Cova S, Weiss S, Michalet X., Biomed Opt Express 1(5), 2010
PMID: 21258559
Fluorescence cross-correlation spectroscopy of a pH-sensitive ratiometric dye for molecular proton exchange studies.
Persson G, Sandén T, Sandberg A, Widengren J., Phys Chem Chem Phys 11(21), 2009
PMID: 19458846
Real-time data acquisition incorporating high-speed software correlator for single-molecule spectroscopy.
Yang LL, Lee HY, Wang MK, Lin XY, Hsu KH, Chang YR, Fann W, White JD., J Microsc 234(3), 2009
PMID: 19493109
Single-quantum dot imaging with a photon counting camera.
Michalet X, Colyer RA, Antelman J, Siegmund OH, Tremsin A, Vallerga JV, Weiss S., Curr Pharm Biotechnol 10(5), 2009
PMID: 19689323
Modulated fluorescence correlation spectroscopy with complete time range information.
Persson G, Thyberg P, Widengren J., Biophys J 94(3), 2008
PMID: 17890388
The enzyme mechanism of nitrite reductase studied at single-molecule level.
Kuznetsova S, Zauner G, Aartsma TJ, Engelkamp H, Hatzakis N, Rowan AE, Nolte RJ, Christianen PC, Canters GW., Proc Natl Acad Sci U S A 105(9), 2008
PMID: 18303118
Single-molecule dynamics of phytochrome-bound fluorophores probed by fluorescence correlation spectroscopy.
Miller AE, Fischer AJ, Laurence T, Hollars CW, Saykally RJ, Lagarias JC, Huser T., Proc Natl Acad Sci U S A 103(30), 2006
PMID: 16844775

16 References

Daten bereitgestellt von Europe PubMed Central.


Soper, J. Opt. Soc. Am. B 9(), 1992

Fries, J. Phys. Chem. A 102(), 1998

Eid, Rev. Sci. Instrum. V71(), 2000

Laurence, J. Phys. Chem. B 108(), 2004

Magde, Phys. Rev. Lett. 29(), 1972

Schatzel, Inst. Phys. Conf. Ser. 77(), 1985

Schatzel, J. Mod. Opt. 35(), 1988

Magatti, Rev. Sci. Instrum. 74(), 2003
Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting.
Wahl M, Gregor I, Patting M, Enderlein J., Opt Express 11(26), 2003
PMID: 19471494

Schatzel, Proc. SPIE 1430(), 1991
Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons.
Weston KD, Dyck M, Tinnefeld P, Muller C, Herten DP, Sauer M., Anal. Chem. 74(20), 2002
PMID: 12403591

Hollars, Chem. Phys. Lett. 370(), 2003

Fore, IEEE J. Sel. Top. Quantum Electron. 11(), 2005
Single photons on demand from a single molecule at room temperature.
Lounis B, Moerner WE., Nature 407(6803), 2000
PMID: 11028995

Widengren, J. Phys. Chem. 99(), 1995
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16544638
PubMed | Europe PMC

Suchen in

Google Scholar