Single-molecule dynamics of phytochrome-bound fluorophores probed by fluorescence correlation spectroscopy

Miller AE, Fischer AJ, Laurence T, Hollars CW, Saykally RJ, Lagarias JC, Huser T (2006)
Proceedings of the National Academy of Sciences 103(30): 11136-11141.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ;
Abstract / Bemerkung
Fluorescence correlation spectroscopy (FCS) was used to investigate the hydrodynamic and photophysical properties of PR1 (phytofluor red 1), an intensely red fluorescent biliprotein variant of the truncated cyanobacterial phytochrome 1 (Cph1 Delta, which consists of the N-terminal 514 amino acids). Single-molecule diffusion measurements showed that PR1 has excellent fluorescence properties at the single-molecule level, making it an interesting candidate for red fluorescent protein fusions. FCS measurements for probing dimer formation in solution over a range of protein concentrations were enabled by addition of Cph1 Delta apoprotein (apoCph1 Delta) to nanomolar solutions of PR1. FCS brightness analysis showed that heterodimerization of PR1 with apoCph1 Delta altered the chemical environment of the PR1 chromophore to further enhance its fluorescence emission. Fluorescence correlation measurements also revealed interactions between apoCph1 Delta and the red fluorescent dyes Cy5.18 and Atto 655 but not Alexa Fluor 660. The concentration dependence of protein:dye complex formation indicated that Atto 655 interacted with, or influenced the formation of, the apoCph1 dimer. These studies presage the utility of phytofluor tags for probing single-molecule dynamics in living cells in which the fluorescence signal can be controlled by the addition of various chromophores that have different structures and photophysical properties, thereby imparting different types of information, such as dimer formation or the presence of open binding faces on a protein.
Erscheinungsjahr
Zeitschriftentitel
Proceedings of the National Academy of Sciences
Band
103
Ausgabe
30
Seite(n)
11136-11141
ISSN
eISSN
PUB-ID

Zitieren

Miller AE, Fischer AJ, Laurence T, et al. Single-molecule dynamics of phytochrome-bound fluorophores probed by fluorescence correlation spectroscopy. Proceedings of the National Academy of Sciences. 2006;103(30):11136-11141.
Miller, A. E., Fischer, A. J., Laurence, T., Hollars, C. W., Saykally, R. J., Lagarias, J. C., & Huser, T. (2006). Single-molecule dynamics of phytochrome-bound fluorophores probed by fluorescence correlation spectroscopy. Proceedings of the National Academy of Sciences, 103(30), 11136-11141. doi:10.1073/pnas.0604724103
Miller, A. E., Fischer, A. J., Laurence, T., Hollars, C. W., Saykally, R. J., Lagarias, J. C., and Huser, T. (2006). Single-molecule dynamics of phytochrome-bound fluorophores probed by fluorescence correlation spectroscopy. Proceedings of the National Academy of Sciences 103, 11136-11141.
Miller, A.E., et al., 2006. Single-molecule dynamics of phytochrome-bound fluorophores probed by fluorescence correlation spectroscopy. Proceedings of the National Academy of Sciences, 103(30), p 11136-11141.
A.E. Miller, et al., “Single-molecule dynamics of phytochrome-bound fluorophores probed by fluorescence correlation spectroscopy”, Proceedings of the National Academy of Sciences, vol. 103, 2006, pp. 11136-11141.
Miller, A.E., Fischer, A.J., Laurence, T., Hollars, C.W., Saykally, R.J., Lagarias, J.C., Huser, T.: Single-molecule dynamics of phytochrome-bound fluorophores probed by fluorescence correlation spectroscopy. Proceedings of the National Academy of Sciences. 103, 11136-11141 (2006).
Miller, Abigail E., Fischer, Amanda J., Laurence, Ted, Hollars, Christopher W., Saykally, Richard J., Lagarias, J. Clark, and Huser, Thomas. “Single-molecule dynamics of phytochrome-bound fluorophores probed by fluorescence correlation spectroscopy”. Proceedings of the National Academy of Sciences 103.30 (2006): 11136-11141.

12 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Removal of Chromophore-Proximal Polar Atoms Decreases Water Content and Increases Fluorescence in a Near Infrared Phytofluor.
Lehtivuori H, Bhattacharya S, Angenent-Mari NM, Satyshur KA, Forest KT., Front Mol Biosci 2(), 2015
PMID: 26636092
Fast Photochemistry of Prototypical Phytochromes-A Species vs. Subunit Specific Comparison.
Ihalainen JA, Takala H, Lehtivuori H., Front Mol Biosci 2(), 2015
PMID: 26779488
Dynamic inhomogeneity in the photodynamics of cyanobacterial phytochrome Cph1.
Kim PW, Rockwell NC, Martin SS, Lagarias JC, Larsen DS., Biochemistry 53(17), 2014
PMID: 24742290
Heterogeneous photodynamics of the pfr state in the cyanobacterial phytochrome Cph1.
Kim PW, Rockwell NC, Martin SS, Lagarias JC, Larsen DS., Biochemistry 53(28), 2014
PMID: 24940993
Origins of fluorescence in evolved bacteriophytochromes.
Bhattacharya S, Auldridge ME, Lehtivuori H, Ihalainen JA, Forest KT., J Biol Chem 289(46), 2014
PMID: 25253687
Working memory and decision processes in visual area v4.
Hayden BY, Gallant JL., Front Neurosci 7(), 2013
PMID: 23550043
Single-particle analysis reveals shutoff control of the Arabidopsis ammonium transporter AMT1;3 by clustering and internalization.
Wang Q, Zhao Y, Luo W, Li R, He Q, Fang X, Michele RD, Ast C, von Wirén N, Lin J., Proc Natl Acad Sci U S A 110(32), 2013
PMID: 23882074
Characterizing diffusion dynamics of a membrane protein associated with nanolipoproteins using fluorescence correlation spectroscopy.
Gao T, Blanchette CD, He W, Bourguet F, Ly S, Katzen F, Kudlicki WA, Henderson PT, Laurence TA, Huser T, Coleman MA., Protein Sci 20(2), 2011
PMID: 21280134
Cyanochromes are blue/green light photoreversible photoreceptors defined by a stable double cysteine linkage to a phycoviolobilin-type chromophore.
Ulijasz AT, Cornilescu G, von Stetten D, Cornilescu C, Velazquez Escobar F, Zhang J, Stankey RJ, Rivera M, Hildebrandt P, Vierstra RD., J Biol Chem 284(43), 2009
PMID: 19671704
Characterization of two thermostable cyanobacterial phytochromes reveals global movements in the chromophore-binding domain during photoconversion.
Ulijasz AT, Cornilescu G, von Stetten D, Kaminski S, Mroginski MA, Zhang J, Bhaya D, Hildebrandt P, Vierstra RD., J Biol Chem 283(30), 2008
PMID: 18480055
Nano-biophotonics: new tools for chemical nano-analytics.
Huser T., Curr Opin Chem Biol 12(5), 2008
PMID: 18786651

33 References

Daten bereitgestellt von Europe PubMed Central.


Sage L.., 1992
Phytochromes and shade-avoidance responses in plants.
Franklin KA, Whitelam GC., Ann. Bot. 96(2), 2005
PMID: 15894550
Phytochrome ancestry: sensors of bilins and light.
Montgomery BL, Lagarias JC., Trends Plant Sci. 7(8), 2002
PMID: 12167331

Karniol B., Vierstra R.., 2005
Light signal transduction in higher plants.
Chen M, Chory J, Fankhauser C., Annu. Rev. Genet. 38(), 2004
PMID: 15568973

Huq E., Quail P.., 2005
Phytochrome structure and signaling mechanisms.
Rockwell NC, Su YS, Lagarias JC., Annu Rev Plant Biol 57(), 2006
PMID: 16669784

Braslavsky S.., 2003

Glazer A.., 1999
The phytofluors: a new class of fluorescent protein probes.
Murphy JT, Lagarias JC., Curr. Biol. 7(11), 1997
PMID: 9382811
Harnessing phytochrome's glowing potential.
Fischer AJ, Lagarias JC., Proc. Natl. Acad. Sci. U.S.A. 101(50), 2004
PMID: 15548612
Multiple roles of a conserved GAF domain tyrosine residue in cyanobacterial and plant phytochromes.
Fischer AJ, Rockwell NC, Jang AY, Ernst LA, Waggoner AS, Duan Y, Lei H, Lagarias JC., Biochemistry 44(46), 2005
PMID: 16285723

Elson E., Magde D.., 1974
Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy.
Haupts U, Maiti S, Schwille P, Webb WW., Proc. Natl. Acad. Sci. U.S.A. 95(23), 1998
PMID: 9811841
Genetic engineering of phytochrome biosynthesis in bacteria.
Gambetta GA, Lagarias JC., Proc. Natl. Acad. Sci. U.S.A. 98(19), 2001
PMID: 11553807
Chromophore-apoprotein interactions in Synechocystis sp. PCC6803 phytochrome Cph1.
Park CM, Shim JY, Yang SS, Kang JG, Kim JI, Luka Z, Song PS., Biochemistry 39(21), 2000
PMID: 10828948
Light-dependent dimerisation in the N-terminal sensory module of cyanobacterial phytochrome 1.
Strauss HM, Schmieder P, Hughes J., FEBS Lett. 579(18), 2005
PMID: 16004995
A second photochromic bacteriophytochrome from Synechocystis sp. PCC 6803: spectral analysis and down-regulation by light.
Park CM, Kim JI, Yang SS, Kang JG, Kang JH, Shim JY, Chung YH, Park YM, Song PS., Biochemistry 39(35), 2000
PMID: 10978170
Fluorescence quenching of dyes by tryptophan: interactions at atomic detail from combination of experiment and computer simulation.
Vaiana AC, Neuweiler H, Schulz A, Wolfrum J, Sauer M, Smith JC., J. Am. Chem. Soc. 125(47), 2003
PMID: 14624606
Inter- and intramolecular fluorescence quenching of organic dyes by tryptophan.
Marme N, Knemeyer JP, Sauer M, Wolfrum J., Bioconjug. Chem. 14(6), 2003
PMID: 14624626
A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome.
Wagner JR, Brunzelle JS, Forest KT, Vierstra RD., Nature 438(7066), 2005
PMID: 16292304
The green fluorescent protein.
Tsien RY., Annu. Rev. Biochem. 67(), 1998
PMID: 9759496
A light-switchable gene promoter system.
Shimizu-Sato S, Huq E, Tepperman JM, Quail PH., Nat. Biotechnol. 20(10), 2002
PMID: 12219076
Synthetic biology: engineering Escherichia coli to see light.
Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM, Voigt CA., Nature 438(7067), 2005
PMID: 16306980
Fast, flexible algorithm for calculating photon correlations.
Laurence TA, Fore S, Huser T., Opt Lett 31(6), 2006
PMID: 16544638

Rigler R., Mets U., Widengren J., Kask P.., 1993

Widengren J., Mets U., Rigler R.., 1995
Distribution of molecular aggregation by analysis of fluctuation moments.
Qian H, Elson EL., Proc. Natl. Acad. Sci. U.S.A. 87(14), 1990
PMID: 2371284

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 16844775
PubMed | Europe PMC

Suchen in

Google Scholar