Coherent two-dimensional nanoscopy

Aeschlimann M, Brixner T, Fischer A, Kramer C, Melchior P, Pfeiffer W, Schneider C, Strüber C, Tuchscherer P, Voronine D (2011)
Science 333(6050): 1723-1726.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ;
Abstract / Bemerkung
We introduce a spectroscopic method that determines nonlinear quantum mechanical response functions beyond the optical diffraction limit and allows direct imaging of nanoscale coherence. In established coherent two-dimensional (2D) spectroscopy, four-wave–mixing responses are measured using three ingoing waves and one outgoing wave; thus, the method is diffraction-limited in spatial resolution. In coherent 2D nanoscopy, we use four ingoing waves and detect the final state via photoemission electron microscopy, which has 50-nanometer spatial resolution. We recorded local nanospectra from a corrugated silver surface and observed subwavelength 2D line shape variations. Plasmonic phase coherence of localized excitations persisted for about 100 femtoseconds and exhibited coherent beats. The observations are best explained by a model in which coupled oscillators lead to Fano-like resonances in the hybridized dark- and bright-mode response.
Erscheinungsjahr
Zeitschriftentitel
Science
Band
333
Ausgabe
6050
Seite(n)
1723-1726
ISSN
eISSN
PUB-ID

Zitieren

Aeschlimann M, Brixner T, Fischer A, et al. Coherent two-dimensional nanoscopy. Science. 2011;333(6050):1723-1726.
Aeschlimann, M., Brixner, T., Fischer, A., Kramer, C., Melchior, P., Pfeiffer, W., Schneider, C., et al. (2011). Coherent two-dimensional nanoscopy. Science, 333(6050), 1723-1726. doi:10.1126/science.1209206
Aeschlimann, M., Brixner, T., Fischer, A., Kramer, C., Melchior, P., Pfeiffer, W., Schneider, C., Strüber, C., Tuchscherer, P., and Voronine, D. (2011). Coherent two-dimensional nanoscopy. Science 333, 1723-1726.
Aeschlimann, M., et al., 2011. Coherent two-dimensional nanoscopy. Science, 333(6050), p 1723-1726.
M. Aeschlimann, et al., “Coherent two-dimensional nanoscopy”, Science, vol. 333, 2011, pp. 1723-1726.
Aeschlimann, M., Brixner, T., Fischer, A., Kramer, C., Melchior, P., Pfeiffer, W., Schneider, C., Strüber, C., Tuchscherer, P., Voronine, D.: Coherent two-dimensional nanoscopy. Science. 333, 1723-1726 (2011).
Aeschlimann, M., Brixner, T., Fischer, A., Kramer, C., Melchior, P., Pfeiffer, Walter, Schneider, C., Strüber, Christian, Tuchscherer, P., and Voronine, Dmitri. “Coherent two-dimensional nanoscopy”. Science 333.6050 (2011): 1723-1726.

32 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Simulating Fluorescence-Detected Two-Dimensional Electronic Spectroscopy of Multichromophoric Systems.
Kunsel T, Tiwari V, Matutes YA, Gardiner AT, Cogdell RJ, Ogilvie JP, Jansen TLC., J Phys Chem B 123(2), 2019
PMID: 30543283
Two-dimensional Fano lineshapes: Excited-state absorption contributions.
Finkelstein-Shapiro D, Pullerits T, Hansen T., J Chem Phys 148(18), 2018
PMID: 29764148
Deconvolution of optical multidimensional coherent spectra.
Richter M, Singh R, Siemens M, Cundiff ST., Sci Adv 4(6), 2018
PMID: 29868644
Coherent two-dimensional electronic mass spectrometry.
Roeding S, Brixner T., Nat Commun 9(1), 2018
PMID: 29955042
Rapid-scan coherent 2D fluorescence spectroscopy.
Draeger S, Roeding S, Brixner T., Opt Express 25(4), 2017
PMID: 28241542
Optimizing sparse sampling for 2D electronic spectroscopy.
Roeding S, Klimovich N, Brixner T., J Chem Phys 146(8), 2017
PMID: 28249459
Incoherent population mixing contributions to phase-modulation two-dimensional coherent excitation spectra.
Grégoire P, Srimath Kandada AR, Vella E, Tao C, Leonelli R, Silva C., J Chem Phys 147(11), 2017
PMID: 28938824
Cavity-assisted ultrafast long-range periodic energy transfer between plasmonic nanoantennas.
Aeschlimann M, Brixner T, Cinchetti M, Frisch B, Hecht B, Hensen M, Huber B, Kramer C, Krauss E, Loeber TH, Pfeiffer W, Piecuch M, Thielen P., Light Sci Appl 6(11), 2017
PMID: 30167218
Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing.
Nielsen MP, Shi X, Dichtl P, Maier SA, Oulton RF., Science 358(6367), 2017
PMID: 29191907
Ultrafast and nonlinear surface-enhanced Raman spectroscopy.
Gruenke NL, Cardinal MF, McAnally MO, Frontiera RR, Schatz GC, Van Duyne RP., Chem Soc Rev 45(8), 2016
PMID: 26848784
Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging.
Kravtsov V, Ulbricht R, Atkin JM, Raschke MB., Nat Nanotechnol 11(5), 2016
PMID: 26854567
Imaging: Nano meets femto.
Petek H., Nat Nanotechnol 11(5), 2016
PMID: 26854568
Attosecond nanoscale near-field sampling.
Förg B, Schötz J, Süßmann F, Förster M, Krüger M, Ahn B, Okell WA, Wintersperger K, Zherebtsov S, Guggenmos A, Pervak V, Kessel A, Trushin SA, Azzeer AM, Stockman MI, Kim D, Krausz F, Hommelhoff P, Kling MF., Nat Commun 7(), 2016
PMID: 27241851
Realistic Silver Optical Constants for Plasmonics.
Jiang Y, Pillai S, Green MA., Sci Rep 6(), 2016
PMID: 27470307
Suppressing sampling noise in linear and two-dimensional spectral simulations.
Kruiger JF, van der Vegte CP, Jansen TL., J Chem Phys 142(5), 2015
PMID: 25662638
Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy.
Mehlenbacher RD, McDonough TJ, Grechko M, Wu MY, Arnold MS, Zanni MT., Nat Commun 6(), 2015
PMID: 25865487
Nanoscale Imaging of Local Few-Femtosecond Near-Field Dynamics within a Single Plasmonic Nanoantenna.
Mårsell E, Losquin A, Svärd R, Miranda M, Guo C, Harth A, Lorek E, Mauritsson J, Arnold CL, Xu H, L'Huillier A, Mikkelsen A., Nano Lett 15(10), 2015
PMID: 26375959
Ultrafast dynamics of single molecules.
Brinks D, Hildner R, van Dijk EM, Stefani FD, Nieder JB, Hernando J, van Hulst NF., Chem Soc Rev 43(8), 2014
PMID: 24473271
Shaping and spatiotemporal characterization of sub-10-fs pulses focused by a high-NA objective.
Pawłowska M, Goetz S, Dreher C, Wurdack M, Krauss E, Razinskas G, Geisler P, Hecht B, Brixner T., Opt Express 22(25), 2014
PMID: 25607100
Surface hopping modeling of two-dimensional spectra.
Tempelaar R, van der Vegte CP, Knoester J, Jansen TL., J Chem Phys 138(16), 2013
PMID: 23635110
Spectroscopic signatures of quantum-coherent energy transfer.
Collini E., Chem Soc Rev 42(12), 2013
PMID: 23417162
Molecular decision trees realized by ultrafast electronic spectroscopy.
Fresch B, Hiluf D, Collini E, Levine RD, Remacle F., Proc Natl Acad Sci U S A 110(43), 2013
PMID: 24043793
Plasmonic antennas as design elements for coherent ultrafast nanophotonics.
Brinks D, Castro-Lopez M, Hildner R, van Hulst NF., Proc Natl Acad Sci U S A 110(46), 2013
PMID: 24163355
Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure.
Nardin G, Autry TM, Silverman KL, Cundiff ST., Opt Express 21(23), 2013
PMID: 24514373
Exciton transport in thin-film cyanine dye J-aggregates.
Valleau S, Saikin SK, Yung MH, Aspuru Guzik A., J Chem Phys 137(3), 2012
PMID: 22830685
Time-resolved surface-enhanced coherent sensing of nanoscale molecular complexes.
Voronine DV, Sinyukov AM, Hua X, Wang K, Jha PK, Munusamy E, Wheeler SE, Welch G, Sokolov AV, Scully MO., Sci Rep 2(), 2012
PMID: 23189240

26 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, Nat Photonics 5(), 2011
Visualizing and controlling vibrational wave packets of single molecules.
Brinks D, Stefani FD, Kulzer F, Hildner R, Taminiau TH, Avlasevich Y, Mullen K, van Hulst NF., Nature 465(7300), 2010
PMID: 20559383
Far-field optical nanoscopy.
Hell SW., Science 316(5828), 2007
PMID: 17525330
Coherent nonlinear optical response of single quantum dots studied by ultrafast near-field spectroscopy.
Guenther T, Lienau C, Elsaesser T, Glanemann M, Axt VM, Kuhn T, Eshlaghi S, Wieck AD., Phys. Rev. Lett. 89(5), 2002
PMID: 12144462
Two-dimensional femtosecond spectroscopy.
Jonas DM., Annu Rev Phys Chem 54(), 2002
PMID: 12626736
Coherent two-dimensional optical spectroscopy.
Cho M., Chem. Rev. 108(4), 2008
PMID: 18363410
Femtosecond phase-coherent two-dimensional spectroscopy.
Tian P, Keusters D, Suzaki Y, Warren WS., Science 300(5625), 2003
PMID: 12791987

AUTHOR UNKNOWN, Phys. Rev., A 81(), 2010

AUTHOR UNKNOWN, APPL PHYS B LASERS OPT 74(), 2002

AUTHOR UNKNOWN, Rev Sci Instrum 71(), 2000
Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide.
Shim SH, Strasfeld DB, Ling YL, Zanni MT., Proc. Natl. Acad. Sci. U.S.A. 104(36), 2007
PMID: 17502604

AUTHOR UNKNOWN, J Phys Condens Matter 16(), 2004

AUTHOR UNKNOWN, ADV MATER 19(), 2007
Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses.
Hanke T, Krauss G, Trautlein D, Wild B, Bratschitsch R, Leitenstorfer A., Phys. Rev. Lett. 103(25), 2009
PMID: 20366283

AUTHOR UNKNOWN, J Chem Phys 102(), 1995

AUTHOR UNKNOWN, Appl Phys Lett 96(), 2010

AUTHOR UNKNOWN, PHYS REV B 6(), 1972
A hybridization model for the plasmon response of complex nanostructures.
Prodan E, Radloff C, Halas NJ, Nordlander P., Science 302(5644), 2003
PMID: 14564001
Plasmon-induced transparency in metamaterials.
Zhang S, Genov DA, Wang Y, Liu M, Zhang X., Phys. Rev. Lett. 101(4), 2008
PMID: 18764363
Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit.
Liu N, Langguth L, Weiss T, Kastel J, Fleischhauer M, Pfau T, Giessen H., Nat Mater 8(9), 2009
PMID: 19578334
The Fano resonance in plasmonic nanostructures and metamaterials.
Luk'yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT., Nat Mater 9(9), 2010
PMID: 20733610
Femtosecond light transmission and subradiant damping in plasmonic crystals.
Ropers C, Park DJ, Stibenz G, Steinmeyer G, Kim J, Kim DS, Lienau C., Phys. Rev. Lett. 94(11), 2005
PMID: 15903856
Femtosecond polarization pulse shaping.
Brixner T, Gerber G., Opt Lett 26(8), 2001
PMID: 18040384

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21835982
PubMed | Europe PMC

Suchen in

Google Scholar