Zero curvature conditions and conformal covariance

Akemann G, Grimm R (1993)
J.Math.Phys. 34(2): 818-835.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
Abstract / Bemerkung
Two‐dimensional zero curvature conditions with special emphasis on conformal properties are investigated in detail and the appearance of covariant higher order differential operators constructed in terms of a projective connection is elucidated. The analysis is based on the Kostant decomposition of simple Lie algebras in terms of representations with respect to their ‘‘principal’’ SL(2) subalgebra.
Stichworte
SL groups; integrable systems; mathematical operators; algebras; lie groups; conformal invariance; curvature
Erscheinungsjahr
1993
Zeitschriftentitel
J.Math.Phys.
Band
34
Ausgabe
2
Seite(n)
818-835
ISSN
0022-2488
Page URI
https://pub.uni-bielefeld.de/record/2318705

Zitieren

Akemann G, Grimm R. Zero curvature conditions and conformal covariance. J.Math.Phys. 1993;34(2):818-835.
Akemann, G., & Grimm, R. (1993). Zero curvature conditions and conformal covariance. J.Math.Phys., 34(2), 818-835. doi:10.1063/1.530224
Akemann, G., and Grimm, R. (1993). Zero curvature conditions and conformal covariance. J.Math.Phys. 34, 818-835.
Akemann, G., & Grimm, R., 1993. Zero curvature conditions and conformal covariance. J.Math.Phys., 34(2), p 818-835.
G. Akemann and R. Grimm, “Zero curvature conditions and conformal covariance”, J.Math.Phys., vol. 34, 1993, pp. 818-835.
Akemann, G., Grimm, R.: Zero curvature conditions and conformal covariance. J.Math.Phys. 34, 818-835 (1993).
Akemann, Gernot, and Grimm, R. “Zero curvature conditions and conformal covariance”. J.Math.Phys. 34.2 (1993): 818-835.