On stochastic completeness of weighted graphs
Huang X (2011)
Bielefeld: Universität.
Bielefelder E-Dissertation | Englisch
Download
Autor*in
Gutachter*in / Betreuer*in
Grigor'yan, Alexander
Einrichtung
Abstract / Bemerkung
In this thesis we are concerned with the long time behavior of continuous time random walks on infinite graphs. The following three related problems are considered.
1. Stochastic completeness of the random walk. We characterize the stochastic completeness of the random walk in terms of function-theoretic and geometric properties of the underlying graph.
2. Uniqueness of the Cauchy problem for the discrete heat equation in certain function classes. We provide a uniqueness class on an arbitrary graph in terms of the growth of the L2-norm of solutions and show its sharpness. An application of this results to bounded solutions yields a criterion for stochastic completeness in terms of the volume growth with respect to a so-called adapted distance. In special cases, this leads to a volume growth criterion with respect to the graph distance as well.
3. Escape rate of the random walk. We provide upper rate functions for stochastically complete random walks in terms of the volume growth function.
Jahr
2011
Page URI
https://pub.uni-bielefeld.de/record/2316893
Zitieren
Huang X. On stochastic completeness of weighted graphs. Bielefeld: Universität; 2011.
Huang, X. (2011). On stochastic completeness of weighted graphs. Bielefeld: Universität.
Huang, Xueping. 2011. On stochastic completeness of weighted graphs. Bielefeld: Universität.
Huang, X. (2011). On stochastic completeness of weighted graphs. Bielefeld: Universität.
Huang, X., 2011. On stochastic completeness of weighted graphs, Bielefeld: Universität.
X. Huang, On stochastic completeness of weighted graphs, Bielefeld: Universität, 2011.
Huang, X.: On stochastic completeness of weighted graphs. Universität, Bielefeld (2011).
Huang, Xueping. On stochastic completeness of weighted graphs. Bielefeld: Universität, 2011.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:54Z
MD5 Prüfsumme
b481e6d3bf272c33cd2792c436a032aa