Geoseq: a tool for dissecting deep-sequencing datasets

Gurtowski J, Cancio A, Shah H, Levovitz C, George A, Homann R, Sachidanandam R (2010)
BMC Bioinformatics 11(1): 506.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor/in
; ; ; ; ; ;
Abstract / Bemerkung
Background Datasets generated on deep-sequencing platforms have been deposited in various public repositories such as the Gene Expression Omnibus (GEO), Sequence Read Archive (SRA) hosted by the NCBI, or the DNA Data Bank of Japan (ddbj). Despite being rich data sources, they have not been used much due to the difficulty in locating and analyzing datasets of interest. Results Geoseq http://geoseq.mssm.edu provides a new method of analyzing short reads from deep sequencing experiments. Instead of mapping the reads to reference genomes or sequences, Geoseq maps a reference sequence against the sequencing data. It is web-based, and holds pre-computed data from public libraries. The analysis reduces the input sequence to tiles and measures the coverage of each tile in a sequence library through the use of suffix arrays. The user can upload custom target sequences or use gene/miRNA names for the search and get back results as plots and spreadsheet files. Geoseq organizes the public sequencing data using a controlled vocabulary, allowing identification of relevant libraries by organism, tissue and type of experiment. Conclusions Analysis of small sets of sequences against deep-sequencing datasets, as well as identification of public datasets of interest, is simplified by Geoseq. We applied Geoseq to, a) identify differential isoform expression in mRNA-seq datasets, b) identify miRNAs (microRNAs) in libraries, and identify mature and star sequences in miRNAS and c) to identify potentially mis-annotated miRNAs. The ease of using Geoseq for these analyses suggests its utility and uniqueness as an analysis tool.
Erscheinungsjahr
2010
Zeitschriftentitel
BMC Bioinformatics
Band
11
Ausgabe
1
Seite(n)
506
ISSN
1471-2105
Page URI
https://pub.uni-bielefeld.de/record/2316624

Zitieren

Gurtowski J, Cancio A, Shah H, et al. Geoseq: a tool for dissecting deep-sequencing datasets. BMC Bioinformatics. 2010;11(1):506.
Gurtowski, J., Cancio, A., Shah, H., Levovitz, C., George, A., Homann, R., & Sachidanandam, R. (2010). Geoseq: a tool for dissecting deep-sequencing datasets. BMC Bioinformatics, 11(1), 506. doi:10.1186/1471-2105-11-506
Gurtowski, J., Cancio, A., Shah, H., Levovitz, C., George, A., Homann, R., and Sachidanandam, R. (2010). Geoseq: a tool for dissecting deep-sequencing datasets. BMC Bioinformatics 11, 506.
Gurtowski, J., et al., 2010. Geoseq: a tool for dissecting deep-sequencing datasets. BMC Bioinformatics, 11(1), p 506.
J. Gurtowski, et al., “Geoseq: a tool for dissecting deep-sequencing datasets”, BMC Bioinformatics, vol. 11, 2010, pp. 506.
Gurtowski, J., Cancio, A., Shah, H., Levovitz, C., George, A., Homann, R., Sachidanandam, R.: Geoseq: a tool for dissecting deep-sequencing datasets. BMC Bioinformatics. 11, 506 (2010).
Gurtowski, James, Cancio, Anthony, Shah, Hardik, Levovitz, Chaya, George, Ajish, Homann, Robert, and Sachidanandam, Ravi. “Geoseq: a tool for dissecting deep-sequencing datasets”. BMC Bioinformatics 11.1 (2010): 506.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:54Z
MD5 Prüfsumme
02a72b3fd0f5f33c9f9d1a2f9363e0c0

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

PMID: 20939882
PubMed | Europe PMC

Suchen in

Google Scholar