Pattern-Dependent Response Modulations in Motion-Sensitive Visual Interneurons-A Model Study

Meyer HG, Lindemann JP, Egelhaaf M (2011)
PLoS ONE 6(7): e21488.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
Even if a stimulus pattern moves at a constant velocity across the receptive field of motion-sensitive neurons, such as lobula plate tangential cells (LPTCs) of flies, the response amplitude modulates over time. The amplitude of these response modulations is related to local pattern properties of the moving retinal image. On the one hand, pattern-dependent response modulations have previously been interpreted as 'pattern-noise', because they deteriorate the neuron's ability to provide unambiguous velocity information. On the other hand, these modulations might also provide the system with valuable information about the textural properties of the environment. We analyzed the influence of the size and shape of receptive fields by simulations of four versions of LPTC models consisting of arrays of elementary motion detectors of the correlation type (EMDs). These models have previously been suggested to account for many aspects of LPTC response properties. Pattern-dependent response modulations decrease with an increasing number of EMDs included in the receptive field of the LPTC models, since spatial changes within the visual field are smoothed out by the summation of spatially displaced EMD responses. This effect depends on the shape of the receptive field, being the more pronounced - for a given total size - the more elongated the receptive field is along the direction of motion. Large elongated receptive fields improve the quality of velocity signals. However, if motion signals need to be localized the velocity coding is only poor but the signal provides - potentially useful - local pattern information. These modelling results suggest that motion vision by correlation type movement detectors is subject to uncertainty: you cannot obtain both an unambiguous and a localized velocity signal from the output of a single cell. Hence, the size and shape of receptive fields of motion sensitive neurons should be matched to their potential computational task.
Erscheinungsjahr
Zeitschriftentitel
PLoS ONE
Band
6
Ausgabe
7
Seite(n)
e21488
ISSN
eISSN
PUB-ID

Zitieren

Meyer HG, Lindemann JP, Egelhaaf M. Pattern-Dependent Response Modulations in Motion-Sensitive Visual Interneurons-A Model Study. PLoS ONE. 2011;6(7):e21488.
Meyer, H. G., Lindemann, J. P., & Egelhaaf, M. (2011). Pattern-Dependent Response Modulations in Motion-Sensitive Visual Interneurons-A Model Study. PLoS ONE, 6(7), e21488. doi:10.1371/journal.pone.0021488
Meyer, H. G., Lindemann, J. P., and Egelhaaf, M. (2011). Pattern-Dependent Response Modulations in Motion-Sensitive Visual Interneurons-A Model Study. PLoS ONE 6, e21488.
Meyer, H.G., Lindemann, J.P., & Egelhaaf, M., 2011. Pattern-Dependent Response Modulations in Motion-Sensitive Visual Interneurons-A Model Study. PLoS ONE, 6(7), p e21488.
H.G. Meyer, J.P. Lindemann, and M. Egelhaaf, “Pattern-Dependent Response Modulations in Motion-Sensitive Visual Interneurons-A Model Study”, PLoS ONE, vol. 6, 2011, pp. e21488.
Meyer, H.G., Lindemann, J.P., Egelhaaf, M.: Pattern-Dependent Response Modulations in Motion-Sensitive Visual Interneurons-A Model Study. PLoS ONE. 6, e21488 (2011).
Meyer, Hanno Gerd, Lindemann, Jens Peter, and Egelhaaf, Martin. “Pattern-Dependent Response Modulations in Motion-Sensitive Visual Interneurons-A Model Study”. PLoS ONE 6.7 (2011): e21488.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:52Z

16 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Peripheral Processing Facilitates Optic Flow-Based Depth Perception.
Li J, Lindemann JP, Egelhaaf M., Front Comput Neurosci 10(), 2016
PMID: 27818631
Encoding of yaw in the presence of distractor motion: studies in a fly motion sensitive neuron.
Roy S, Sinha SR, de Ruyter van Steveninck R., J Neurosci 35(16), 2015
PMID: 25904799
Texture dependence of motion sensing and free flight behavior in blowflies.
Lindemann JP, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 23335890
Neural specializations for small target detection in insects.
Nordström K., Curr Opin Neurobiol 22(2), 2012
PMID: 22244741
Temporal and spatial adaptation of transient responses to local features.
O'Carroll DC, Barnett PD, Nordström K., Front Neural Circuits 6(), 2012
PMID: 23087617
Enhancement of prominent texture cues in fly optic flow processing.
Kurtz R., Front Neural Circuits 6(), 2012
PMID: 23112763
Facilitation of dragonfly target-detecting neurons by slow moving features on continuous paths.
Dunbier JR, Wiederman SD, Shoemaker PA, O'Carroll DC., Front Neural Circuits 6(), 2012
PMID: 23112764
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913

35 References

Daten bereitgestellt von Europe PubMed Central.

Neuronal Processing of Optic Flow.
Lappe M., 1999
The neural computation of visual motion information.
Egelhaaf M., 2006
Autocorrelation, a principle for the evaluation of sensory information by the central nervous system.
Reichardt W., 1961
Movement detection in arthropods.
Egelhaaf M, Borst A., Rev Oculomot Res 5(), 1993
PMID: 8420562
Modelling the power spectra of natural images: statistics and information.
van der Schaaf A, van Hateren JH., Vision Res. 36(17), 1996
PMID: 8917763
Modeling pattern noise in responses of fly motion detectors to naturalistic scenes.
Rajesh S, Rainsford T, O'Carroll D., 2005
Velocity constancy and models for wide-field visual motion detection in insects.
Shoemaker PA, O'Carroll DC, Straw AD., Biol Cybern 93(4), 2005
PMID: 16151841
Implementation of saturation for modelling pattern noise using naturalistic stimuli.
Rajesh S, Rainsford T, Brinkworth RSA, Abbott D, O'Carroll DC., 2006
Robust models for optic flow coding in natural scenes inspired by insect biology.
Brinkworth RS, O'Carroll DC., PLoS Comput. Biol. 5(11), 2009
PMID: 19893631
Accuracy of velocity estimation by Reichardt correlators.
Dror RO, O'Carroll DC, Laughlin SB., 2001
Dendritic integration and its role in computing image velocity.
Single S, Borst A., Science 281(5384), 1998
PMID: 9743497
Adaptation of response transients in fly motion vision. II: Model studies.
Borst A., 2003
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., 1989
Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals.
Hausen K., 1982
Motion sensitive interneurons in the optomotor system of the fly II. The horizontal cells: receptive field organization and response characteristics.
Hausen K., 1982
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway.
Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M., J. Neurosci. 25(27), 2005
PMID: 16000634
High Dynamic Range Imaging.
Reinhard E, Ward G, Pattanaik S, Debevec P., 2005
Contrast sensitivity of insect motion detectors to natural images.
Straw AD, Rainsford T, O'Carroll DC., J Vis 8(3), 2008
PMID: 18484838
Fly Motion Vision.
Borst A, Haag J, Reiff D., 2010
Arrangement of optical axes and spatial resolution in the compound eye of the female blowfly Calliphora.
Petrowitz R, Dahmen H, Egelhaaf M., 2000
Spectral properties of movement perception in the dronefly Eristalis.
Srinivasan M., 1990
S-potentials from colour units in the retina of fish (Cyprinidae).
Naka KI, Rushton WA., J. Physiol. (Lond.) 185(3), 1966
PMID: 5918058
Nonlinear models of the first synapse in the light-adapted fly retina.
Juusola M, Weckstrom M, Uusitalo RO, Korenberg MJ, French AS., J. Neurophysiol. 74(6), 1995
PMID: 8747212
Elementary movement detectors in an insect visual system.
Buchner E., 1976
Adaptation and the temporal delay filter of fly motion detectors.
Harris RA, O'Carroll DC, Laughlin SB., Vision Res. 39(16), 1999
PMID: 10492824
Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency. Proceedings of the Royal Society of London.
Maddess T, Laughlin S., 1985
Adaptation of response transients in fly motion vision. I: Experiments.
Reisenman C, Haag J, Borst A., 2003
Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes. Proceedings of the Royal Society of London.
Kurtz R, Egelhaaf M, Meyer HG, Kern R., 2009
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21760894
PubMed | Europe PMC

Suchen in

Google Scholar