Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers

Nagel L, Plattner C, Budke C, Majer Z, De Vries AL, Berkemeier T, Koop T, Sewald N (2011)
Amino Acids 41(3): 719-732.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Nagel, LillyUniBi; Plattner, Carolin; Budke, CarstenUniBi; Majer, Zsuzsanna; De Vries, Arthur L.; Berkemeier, Thomas; Koop, ThomasUniBi ; Sewald, NorbertUniBi
Abstract / Bemerkung
In Arctic and Antarctic marine regions, where the temperature declines below the colligative freezing point of physiological fluids, efficient biological antifreeze agents are crucial for the survival of polar fish. One group of such agents is classified as antifreeze glycoproteins (AFGP) that usually consist of a varying number (n = 4-55) of [AAT] (n) -repeating units. The threonine side chain of each unit is glycosidically linked to beta-d-galactosyl-(1 -> 3)-alpha-N-acetyl-d-galactosamine. These biopolymers can be considered as biological antifreeze foldamers. A preparative route for stepwise synthesis of AFGP allows for efficient synthesis. The diglycosylated threonine building block was introduced into the peptide using microwave-enhanced solid phase synthesis. By this versatile solid phase approach, glycosylated peptides of varying sequences and lengths could be obtained. Conformational studies of the synthetic AFGP analogs were performed by circular dichroism experiments (CD). Furthermore, the foldamers were analysed microphysically according to their inhibiting effect on ice recrystallization and influence on the crystal habit.
Stichworte
Circular dichroism; synthesis; Ice recrystallization; Solid phase peptide synthesis; Microwave-enhanced; Glycopeptides; Bioorganic chemistry
Erscheinungsjahr
2011
Zeitschriftentitel
Amino Acids
Band
41
Ausgabe
3
Seite(n)
719-732
ISSN
0939-4451
eISSN
1438-2199
Page URI
https://pub.uni-bielefeld.de/record/2307052

Zitieren

Nagel L, Plattner C, Budke C, et al. Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers. Amino Acids. 2011;41(3):719-732.
Nagel, L., Plattner, C., Budke, C., Majer, Z., De Vries, A. L., Berkemeier, T., Koop, T., et al. (2011). Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers. Amino Acids, 41(3), 719-732. https://doi.org/10.1007/s00726-011-0937-8
Nagel, Lilly, Plattner, Carolin, Budke, Carsten, Majer, Zsuzsanna, De Vries, Arthur L., Berkemeier, Thomas, Koop, Thomas, and Sewald, Norbert. 2011. “Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers”. Amino Acids 41 (3): 719-732.
Nagel, L., Plattner, C., Budke, C., Majer, Z., De Vries, A. L., Berkemeier, T., Koop, T., and Sewald, N. (2011). Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers. Amino Acids 41, 719-732.
Nagel, L., et al., 2011. Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers. Amino Acids, 41(3), p 719-732.
L. Nagel, et al., “Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers”, Amino Acids, vol. 41, 2011, pp. 719-732.
Nagel, L., Plattner, C., Budke, C., Majer, Z., De Vries, A.L., Berkemeier, T., Koop, T., Sewald, N.: Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers. Amino Acids. 41, 719-732 (2011).
Nagel, Lilly, Plattner, Carolin, Budke, Carsten, Majer, Zsuzsanna, De Vries, Arthur L., Berkemeier, Thomas, Koop, Thomas, and Sewald, Norbert. “Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers”. Amino Acids 41.3 (2011): 719-732.

13 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Synthesis and conformational preferences of short analogues of antifreeze glycopeptides (AFGP).
Urbańczyk M, Jewgiński M, Krzciuk-Gula J, Góra J, Latajka R, Sewald N., Beilstein J Org Chem 15(), 2019
PMID: 31435440
Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis.
Urbańczyk M, Góra J, Latajka R, Sewald N., Amino Acids 49(2), 2017
PMID: 27913993
Homochirality of β-Peptides: A Significant Biomimetic Property of Unnatural Systems.
Mándity IM, Nekkaa I, Paragi G, Fülöp F., ChemistryOpen 6(4), 2017
PMID: 28794942
Influence of Linker Length on Conformational Preferences of Glycosylated Sugar Amino Acid Foldamers.
Sunkari YK, Alam F, Kandiyal PS, Aloysius S, Ampapathi RS, Chakraborty TK., Chembiochem 17(19), 2016
PMID: 27418310
Thermodynamic Switch in Binding of Adhesion/Growth Regulatory Human Galectin-3 to Tumor-Associated TF Antigen (CD176) and MUC1 Glycopeptides.
Rodriguez MC, Yegorova S, Pitteloud JP, Chavaroche AE, André S, Ardá A, Minond D, Jiménez-Barbero J, Gabius HJ, Cudic M., Biochemistry 54(29), 2015
PMID: 26129647
Perturbation of long-range water dynamics as the mechanism for the antifreeze activity of antifreeze glycoprotein.
Mallajosyula SS, Vanommeslaeghe K, MacKerell AD., J Phys Chem B 118(40), 2014
PMID: 25137353
Microwave-assisted solid-phase synthesis of antifreeze glycopeptides.
Izumi R, Matsushita T, Fujitani N, Naruchi K, Shimizu H, Tsuda S, Hinou H, Nishimura S., Chemistry 19(12), 2013
PMID: 23401082
Synthesis of peptides and glycopeptides with polyproline II helical topology as potential antifreeze molecules.
Corcilius L, Santhakumar G, Stone RS, Capicciotti CJ, Joseph S, Matthews JM, Ben RN, Payne RJ., Bioorg Med Chem 21(12), 2013
PMID: 23523384
Antifreeze peptides and glycopeptides, and their derivatives: potential uses in biotechnology.
Bang JK, Lee JH, Murugan RN, Lee SG, Do H, Koh HY, Shim HE, Kim HC, Kim HJ., Mar Drugs 11(6), 2013
PMID: 23752356
Total synthesis of homogeneous antifreeze glycopeptides and glycoproteins.
Wilkinson BL, Stone RS, Capicciotti CJ, Thaysen-Andersen M, Matthews JM, Packer NH, Ben RN, Payne RJ., Angew Chem Int Ed Engl 51(15), 2012
PMID: 22389168
Influence of sequential modifications and carbohydrate variations in synthetic AFGP analogues on conformation and antifreeze activity.
Nagel L, Budke C, Erdmann RS, Dreyer A, Wennemers H, Koop T, Sewald N., Chemistry 18(40), 2012
PMID: 22930587
Antifreeze glycopeptide diastereomers.
Nagel L, Budke C, Dreyer A, Koop T, Sewald N., Beilstein J Org Chem 8(), 2012
PMID: 23209499

57 References

Daten bereitgestellt von Europe PubMed Central.

Antifreeze glycoproteins: structure, conformation, and biological applications.
Bouvet V, Ben RN., Cell Biochem. Biophys. 39(2), 2003
PMID: 14515019

C, Chem Phys Chem 7(), 2006
A kinetic description of antifreeze glycoprotein activity.
Burcham TS, Osuga DT, Yeh Y, Feeney RE., J. Biol. Chem. 261(14), 1986
PMID: 3700396

CA, J Pept Protein Res 17(), 1981
Conformation of the antifreeze glycoprotein of polar fish.
Bush CA, Ralapati S, Matson GM, Yamasaki RB, Osuga DT, Yeh Y, Feeney RE., Arch. Biochem. Biophys. 232(2), 1984
PMID: 6087734
The polyproline II conformation in short alanine peptides is noncooperative.
Chen K, Liu Z, Kallenbach NR., Proc. Natl. Acad. Sci. U.S.A. 101(43), 2004
PMID: 15489268

CJ, Cryoletters 23(), 2002

AUTHOR UNKNOWN, 0

SJ, J Am Chem Soc 117(), 1995
Antifreeze glycoprotein activity correlates with long-range protein-water dynamics.
Ebbinghaus S, Meister K, Born B, DeVries AL, Gruebele M, Havenith M., J. Am. Chem. Soc. 132(35), 2010
PMID: 20712311
Preferred peptide backbone conformations in the unfolded state revealed by the structure analysis of alanine-based (AXA) tripeptides in aqueous solution.
Eker F, Griebenow K, Cao X, Nafie LA, Schweitzer-Stenner R., Proc. Natl. Acad. Sci. U.S.A. 101(27), 2004
PMID: 15220481

ME, Carbohydr Res 21(), 1972
A biological antifreeze.
Feeney RE., Am. Sci. 62(6), 1974
PMID: 4440942

P, Glycoconj. 4(), 1987

J, Chem BioChem 11(), 2010

J, J Org Chem 58(), 1993
'Antifreeze' glycoproteins from polar fish.
Harding MM, Anderberg PI, Haymet AD., Eur. J. Biochem. 270(7), 2003
PMID: 12653993
Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies.
Heggemann C, Budke C, Schomburg B, Majer Z, Wissbrock M, Koop T, Sewald N., Amino Acids 38(1), 2009
PMID: 19165574

B, Chem Ber 89(), 1956
Host-guest study of left-handed polyproline II helix formation.
Kelly MA, Chellgren BW, Rucker AL, Troutman JM, Fried MG, Miller AF, Creamer TP., Biochemistry 40(48), 2001
PMID: 11724549

CA, J Cryst Growth 143(), 1994
Fish antifreeze protein and the freezing and recrystallization of ice.
Knight CA, DeVries AL, Oolman LD., Nature 308(5956), 1984
PMID: 6700733
Solute effects on ice recrystallization: an assessment technique.
Knight CA, Hallett J, DeVries AL., Cryobiology 25(1), 1988
PMID: 3349811
Adsorption to ice of fish antifreeze glycopeptides 7 and 8.
Knight CA, Driggers E, DeVries AL., Biophys. J. 64(1), 1993
PMID: 8431545
Nonequilibrium antifreeze peptides and the recrystallization of ice.
Knight CA, Wen D, Laursen RA., Cryobiology 32(1), 1995
PMID: 7697996

SD, J Am Chem Soc 120(), 1998
Conformational and dynamic properties of a 14 residue antifreeze glycopeptide from Antarctic cod.
Lane AN, Hays LM, Feeney RE, Crowe LM, Crowe JH., Protein Sci. 7(7), 1998
PMID: 9684888
Comparison of the solution conformation and dynamics of antifreeze glycoproteins from Antarctic fish.
Lane AN, Hays LM, Tsvetkova N, Feeney RE, Crowe LM, Crowe JH., Biophys. J. 78(6), 2000
PMID: 10827996
Studies on the structure and activity of low molecular weight glycoproteins from an antarctic fish.
Lin Y, Duman JG, DeVries AL., Biochem. Biophys. Res. Commun. 46(1), 1972
PMID: 5006918
Solvent dependence of PII conformation in model alanine peptides.
Liu Z, Chen K, Ng A, Shi Z, Woody RW, Kallenbach NR., J. Am. Chem. Soc. 126(46), 2004
PMID: 15548011
Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins.
Makowska J, Rodziewicz-Motowidlo S, Baginska K, Vila JA, Liwo A, Chmurzynski L, Scheraga HA., Proc. Natl. Acad. Sci. U.S.A. 103(6), 2006
PMID: 16446433

N, J Chem Soc Perkin Trans 1(), 1997
Rapid microwave-assisted solid-phase glycopeptide synthesis.
Matsushita T, Hinou H, Kurogochi M, Shimizu H, Nishimura S., Org. Lett. 7(5), 2005
PMID: 15727464
Antifreeze glycoproteins from the blood of an antarctic fish. The structure of the proline-containing glycopeptides.
Morris HR, Thompson MR, Osuga DT, Ahmed AI, Chan SM, Vandenheede JR, Feeney RE., J. Biol. Chem. 253(14), 1978
PMID: 670183
Antifreeze glycoproteins from Arctic fish.
Osuga DT, Feeney RE., J. Biol. Chem. 253(15), 1978
PMID: 670200

AUTHOR UNKNOWN, 0
Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins.
Parody-Morreale A, Murphy KP, Di Cera E, Fall R, DeVries AL, Gill SJ., Nature 333(6175), 1988
PMID: 3386720

AUTHOR UNKNOWN, 0

R, Chem Sci 1(), 2010
One-pot azidochlorination of glycals.
Plattner C, Hofener M, Sewald N., Org. Lett. 13(4), 2011
PMID: 21244046
Inhibition of growth of nonbasal planes in ice by fish antifreezes.
Raymond JA, Wilson P, DeVries AL., Proc. Natl. Acad. Sci. U.S.A. 86(3), 1989
PMID: 2915983

AUTHOR UNKNOWN, 0
Conformation of the backbone in unfolded proteins.
Shi Z, Chen K, Liu Z, Kallenbach NR., Chem. Rev. 106(5), 2006
PMID: 16683759

Y, Angew Chem Int Ed 116(), 2004
Conformational studies of a synthetic peptide corresponding to the repeat motif of C hordein.
Tatham AS, Drake AF, Shewry PR., Biochem. J. 259(2), 1989
PMID: 2719660

ML, Biopolymers 12(), 1973
Facile solid-phase synthesis of an antifreeze glycoprotein.
Tseng PH, Jiaang WT, Chang MY, Chen ST., Chemistry 7(3), 2001
PMID: 11261655

AUTHOR UNKNOWN, 0
Computed circular dichroism spectra for the evaluation of protein conformation.
Greenfield N, Fasman GD., Biochemistry 8(10), 1969
PMID: 5346390

GA, Chem 113(), 2001
Material in PUB:
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21603949
PubMed | Europe PMC

Suchen in

Google Scholar