Meiofauna in a chemosynthetic groundwater ecosystem: Movile Cave, Romania
Muschiol D (2009)
Bielefeld (Germany): Bielefeld University.
Bielefelder E-Dissertation | Englisch
Download
Autor*in
Gutachter*in / Betreuer*in
Einrichtung
Alternativer Titel
Meiofauna in einem chemoautotrophen Grundwasser-Ökosystem: die Movile-Höhle, Rumänien
Abstract / Bemerkung
Die 1986 entdeckte Movile-Höhle stellt ein Grundwasserökosystem dar, das eine artenreiche Gemeinschaft von Wirbellosen beherbergt. Jedoch erreicht keinerlei photoautotroph produzierte Nahrung die Höhle, die seit mindestens der letzten Eiszeit vollständig von der Erdoberfläche isoliert ist. Stattdessen beruht alles Leben in der Höhle allein auf chemoautotropher Produktion. Auf einem thermomineralem, methan- und sulfidhaltigem See schwimmen chemoautotrophe mikrobielle Matten, die von dichten, teilweise endemischen Meiofaunapopulationen besiedelt sind. Diese Gemeinschaft umfasst jedoch nur etwa 20 Arten, so dass das Nahrungsnetz der Matten außergewöhnlich einfach aufgebaut ist. Aufgrund der Besonderheiten dieses Ökosystems (extreme Isolation, alleinige Abhängigkeit von chemoautotropher Produktion, konstante abiotische Parameter) bietet die Movile-Höhle die Gelegenheit, ein vollständiges Ökosystem umfassend zu charakterisieren. Das Hauptanliegen der Studie war, einen Einblick in das Nahrungsnetz dieses Ökosystems zu erlangen.
Die einzigartigen physikalisch-chemischen Bedingungen der Höhle wurden experimentell simuliert, so dass schwimmende mikrobielle Matten im Labor kultiviert werden konnten. Diese kultivierten Matten wurden schnell von den hochadaptierten Höhlenorganismen kolonisiert. Gemessen an Individuenzahl und Biomasse wurden sowohl kultivierte als auch natürliche Matten deutlich von fünf Arten bakterienfressender Nematoden sowie einem räuberischen Copepoden dominiert. Die Entwicklung der Nematodengemeinschaft wurde über ein Jahr verfolgt, wobei sich zeigte, dass die relative Zusammensetzung auf Artniveau starken Fluktuationen unterlag. Ähnliche Fluktuationen wurden auch in natürlich gewachsenen Matten beobachtet und könnten eine sukzessive Abnahme bakterieller Nahrung in den Matten widerspiegeln. Frühere Berichte, dass die Nematoden auch unter vollständiger Anoxie gedeihen, konnten nicht bestätigt werden.
Mit den beiden häufigsten Nematodenarten der Höhle wurden Untersuchungen zum Lebenszyklus durchgeführt. Sowohl Poikilolaimus sp. als auch Panagrolaimus sp. erwiesen sich als vergleichsweise schnell wachsende Arten, die ihre Populationsgrößen alle 4,21 bzw. 2,24 Tage verdoppeln können, wenn Nahrung im Überfluss vorhanden ist. Panagrolaimus produziert zwar während seines Lebens insgesamt weniger Nachkommen als Poikilolaimus, weist aber aufgrund seiner kürzeren Entwicklungszeit ein höheres maximales Populationswachstum auf. Anschließende Studien unter variablen Nahrungsbedingungen sowie die Tatsache, dass in Movile kein kompetitiver Ausschluss von Nematodenarten stattfindet, legen nahe, dass die Nematoden unterschiedliche Ansprüche bezüglich der bevorzugten Nahrungsdichte aufweisen.
Eine verbesserte Methode zur Untersuchung von Parametern des Lebenszyklus von Nematoden wurde entwickelt und anschließend auf Caenorhabditis elegans angewendet; möglicherweise wird sie sich im Vergleich zu traditionellen Kultivierungstechniken als vorteilhaft erweisen.
Studien zum Nahrungsnetz zielten darauf ab, zu untersuchen, ob die Nematoden, die zweifellos einen erheblichen Anteil der chemoautotroph produzierten Biomasse konsumieren, auch höheren trophischen Ebenen als Nahrungsgrundlage dienen. Mit täglichen Konsumptionsraten, die das 2,5-fache seines eigenen Körpergewichtes übersteigen konnten, erwies sich der häufige Copepode Eucyclops subterraneus scythicus als gefräßiger Räuber von Nematoden - ein Ergebnis, dass auch von vorläufigen Untersuchungen zu Stabilen-Isotopen-Verhältnissen (Delta15N) gestützt wird. Berechnungen der Biomassenproduktion durch Nematoden sowie der Fraßraten des Copepoden legen nahe, dass Eucyclops in Movile eine top-down Kontrolle auf die Nematodenpopulationen ausüben könnte. Weitere Räuber-Beute-Experimente mit dem an der Erdoberfläche weitverbreiteten Copepoden Diacyclops bicuspidatus deuten an, dass die beobachtete trophische Verbindung zwischen Nematoden und Copepoden auch in zahlreichen anderen aquatischen Habitaten von Bedeutung ist: Sie könnte eine wichtige benthisch-pelagische Kopplung zwischen mikrobiellem Kohlenstoff, endobenthischen Nematoden, epibenthischen Copepoden und pelagischen Fischen darstellen.
Erste Untersuchungen anhand von Amplified Ribosomal DNA Restriction Analysis (ARDRA) zeigten, dass die bakterielle Diversität der schwimmenden mikrobiellen Matten in Movile möglicherweise höher als erwartet ausfällt.
Zusammenfassend lässt sich festhalten, dass unsere Untersuchungen eine erste Skizze der wichtigsten energetischen Wege im Nahrungsnetz von Movile entwerfen. Das entstehende Bild zeigt ein außergewöhnlich einfach aufgebautes Nahrungsnetz, in dem chemoautotrophe mikrobielle Matten die Nahrungsgrundlage bakterienfressender Nematoden sind, die wiederum stark von Copepoden bejagt werden.
Discovered in 1986, Movile Cave is a peculiar groundwater ecosystem sustaining abundant and diverse invertebrate communities. Isolated from the surface since preglacial times, the cave lacks input of allochthonous photoautotrophically based food. Instead, all life in Movile Cave entirely depends on in situ chemoautotrophic production. Chemoautotrophic microbial mats floating on a cave pond of thermomineral, highly sulphidic and methanic water are inhabited by dense populations of partly endemic meiofauna from a wide range of taxonomic groups. Yet, the mats' meiofauna comprises no more than about 20 species, suggesting an extraordinary simple food web in comparison to other habitats. Along with the unique properties of this ecosystem (extreme isolation, in situ chemoautotrophic production alone, constant abiotic factors), Movile Cave thus offers the opportunity to characterize and eventually understand an ecosystem as a whole. The main objective of our studies on the floating microbial mats of Movile Cave was to identify their key species and major trophic links, thereby getting a first general idea of the dynamics and functioning of this self-contained ecosystem. Since chances of quantitative in-situ sampling are negligible in Movile Cave, we experimentally simulated the cave's unique physicochemical conditions in order to develop a model system allowing for laboratory investigation of the mat community. By manipulating the atmosphere in enclosures set atop thermomineral water, we created hypoxic conditions that permitted the development of floating microbial mats. Both in the laboratory and the cave itself, these cultivated mats were quickly colonized by Movile's highly adapted invertebrates. In terms of total abundance and biomass, both native and cultivated mats were clearly dominated by five bacterivorous nematode species and a predacious copepod species. Throughout a year-long investigation period, we monitored meiofaunal community structure and observed strong fluctuations in the relative importance of individual nematode species. These fluctuations also characterized samples of native mat material and may reflect a succession of decreasing bacterial food availability within the mats. However, previous reports on the occurrence of nematodes surviving and reproducing under complete anoxia could not be confirmed. In order to gather basic, so far missing ecological information, life-cycle studies were conducted with the two most abundant nematode species from Movile. Under excess food conditions, both Poikilolaimus sp. and Panagrolaimus sp. emerged as comparatively fast-growing species, with population doubling times of 4.21 and 2.24 days, respectively. Panagrolaimus produced less progeny than Poikilolaimus during its life but exhibited faster maximum population growth due to its earlier maturation. As indicated by subsequent studies under varying food regimes and the fact that competitive exclusion does not occur in Movile, the nematodes apparently evince different food density preferences. An improved method for the estimation of life-cycle parameters in nematodes was developed and subsequently applied to Caenorhabditis elegans; it may ultimately prove to be more convenient than traditional cultivation techniques. Food web studies aimed to investigate if nematodes, which doubtless consume a considerable amount of chemoautotrophically produced biomass in Movile Cave, in turn serve as a food base for higher trophic levels. With daily consumption rates exceeding its own body weight by a factor of 2.5, the abundant copepod Eucyclops subterraneus scythicus emerged as a voracious predator of nematodes, a finding that is also supported by preliminary investigations of nitrogen stable isotope ratios (Delta15N). Calculations of nematode biomass production and copepod feeding rates suggested that Eucyclops might top-down control nematode populations in Movile Cave. As indicated by predator-prey experiments with a common surface-dwelling copepod, Diacyclops bicuspidatus, the revealed trophic linkage between nematodes and copepods might be of considerable importance in many other aquatic habitats, providing an important benthic-pelagic coupling between microbial carbon, endobenthic nematodes, epibenthic copepods, and pelagic fish. First experiments employing Amplified Ribosomal DNA Restriction Analysis (ARDRA) suggested that the bacterial diversity of Movile's floating microbial mats is probably higher than expected. The investigation of how nematode grazing affects the microbial community of the mats appears a promising field for further investigations. In summary, our investigations provided a first sketch of the main energetic pathways in the food-web of Movile. The emerging picture shows an extraordinary simple food web, with chemosynthetic mats sustaining countless bacterial-feeding nematodes, which are, in turn, heavily predated upon by copepods.
Discovered in 1986, Movile Cave is a peculiar groundwater ecosystem sustaining abundant and diverse invertebrate communities. Isolated from the surface since preglacial times, the cave lacks input of allochthonous photoautotrophically based food. Instead, all life in Movile Cave entirely depends on in situ chemoautotrophic production. Chemoautotrophic microbial mats floating on a cave pond of thermomineral, highly sulphidic and methanic water are inhabited by dense populations of partly endemic meiofauna from a wide range of taxonomic groups. Yet, the mats' meiofauna comprises no more than about 20 species, suggesting an extraordinary simple food web in comparison to other habitats. Along with the unique properties of this ecosystem (extreme isolation, in situ chemoautotrophic production alone, constant abiotic factors), Movile Cave thus offers the opportunity to characterize and eventually understand an ecosystem as a whole. The main objective of our studies on the floating microbial mats of Movile Cave was to identify their key species and major trophic links, thereby getting a first general idea of the dynamics and functioning of this self-contained ecosystem. Since chances of quantitative in-situ sampling are negligible in Movile Cave, we experimentally simulated the cave's unique physicochemical conditions in order to develop a model system allowing for laboratory investigation of the mat community. By manipulating the atmosphere in enclosures set atop thermomineral water, we created hypoxic conditions that permitted the development of floating microbial mats. Both in the laboratory and the cave itself, these cultivated mats were quickly colonized by Movile's highly adapted invertebrates. In terms of total abundance and biomass, both native and cultivated mats were clearly dominated by five bacterivorous nematode species and a predacious copepod species. Throughout a year-long investigation period, we monitored meiofaunal community structure and observed strong fluctuations in the relative importance of individual nematode species. These fluctuations also characterized samples of native mat material and may reflect a succession of decreasing bacterial food availability within the mats. However, previous reports on the occurrence of nematodes surviving and reproducing under complete anoxia could not be confirmed. In order to gather basic, so far missing ecological information, life-cycle studies were conducted with the two most abundant nematode species from Movile. Under excess food conditions, both Poikilolaimus sp. and Panagrolaimus sp. emerged as comparatively fast-growing species, with population doubling times of 4.21 and 2.24 days, respectively. Panagrolaimus produced less progeny than Poikilolaimus during its life but exhibited faster maximum population growth due to its earlier maturation. As indicated by subsequent studies under varying food regimes and the fact that competitive exclusion does not occur in Movile, the nematodes apparently evince different food density preferences. An improved method for the estimation of life-cycle parameters in nematodes was developed and subsequently applied to Caenorhabditis elegans; it may ultimately prove to be more convenient than traditional cultivation techniques. Food web studies aimed to investigate if nematodes, which doubtless consume a considerable amount of chemoautotrophically produced biomass in Movile Cave, in turn serve as a food base for higher trophic levels. With daily consumption rates exceeding its own body weight by a factor of 2.5, the abundant copepod Eucyclops subterraneus scythicus emerged as a voracious predator of nematodes, a finding that is also supported by preliminary investigations of nitrogen stable isotope ratios (Delta15N). Calculations of nematode biomass production and copepod feeding rates suggested that Eucyclops might top-down control nematode populations in Movile Cave. As indicated by predator-prey experiments with a common surface-dwelling copepod, Diacyclops bicuspidatus, the revealed trophic linkage between nematodes and copepods might be of considerable importance in many other aquatic habitats, providing an important benthic-pelagic coupling between microbial carbon, endobenthic nematodes, epibenthic copepods, and pelagic fish. First experiments employing Amplified Ribosomal DNA Restriction Analysis (ARDRA) suggested that the bacterial diversity of Movile's floating microbial mats is probably higher than expected. The investigation of how nematode grazing affects the microbial community of the mats appears a promising field for further investigations. In summary, our investigations provided a first sketch of the main energetic pathways in the food-web of Movile. The emerging picture shows an extraordinary simple food web, with chemosynthetic mats sustaining countless bacterial-feeding nematodes, which are, in turn, heavily predated upon by copepods.
Stichworte
Pestera Movile;
Mesofauna;
Aquatisches Ökosystem;
Biofilm;
Nahrungskette;
Anoxie;
Hypoxie;
Karsthöhle;
Movile-Höhle;
Meiofauna;
Mikrobielle Matten;
Chemoautotrophes Ökosystem;
Populationswachstumsrate;
Movile Cave;
Microbial mat;
Chemosynthetic ecosystem;
Population growth;
Life cycle
Jahr
2009
Page URI
https://pub.uni-bielefeld.de/record/2305755
Zitieren
Muschiol D. Meiofauna in a chemosynthetic groundwater ecosystem: Movile Cave, Romania. Bielefeld (Germany): Bielefeld University; 2009.
Muschiol, D. (2009). Meiofauna in a chemosynthetic groundwater ecosystem: Movile Cave, Romania. Bielefeld (Germany): Bielefeld University.
Muschiol, Daniel. 2009. Meiofauna in a chemosynthetic groundwater ecosystem: Movile Cave, Romania. Bielefeld (Germany): Bielefeld University.
Muschiol, D. (2009). Meiofauna in a chemosynthetic groundwater ecosystem: Movile Cave, Romania. Bielefeld (Germany): Bielefeld University.
Muschiol, D., 2009. Meiofauna in a chemosynthetic groundwater ecosystem: Movile Cave, Romania, Bielefeld (Germany): Bielefeld University.
D. Muschiol, Meiofauna in a chemosynthetic groundwater ecosystem: Movile Cave, Romania, Bielefeld (Germany): Bielefeld University, 2009.
Muschiol, D.: Meiofauna in a chemosynthetic groundwater ecosystem: Movile Cave, Romania. Bielefeld University, Bielefeld (Germany) (2009).
Muschiol, Daniel. Meiofauna in a chemosynthetic groundwater ecosystem: Movile Cave, Romania. Bielefeld (Germany): Bielefeld University, 2009.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-25T06:27:49Z
MD5 Prüfsumme
d2f90551d229a4650dcc10ea069c69fe