Learning manifolds with the Parametrized Self-Organizing Map and Unsupervised Kernel Regression

Klanke S (2007)
Bielefeld (Germany): Bielefeld University.

Download
OA
Bielefelder E-Dissertation | Englisch
Volltext vorhanden für diesen Nachweis
Autor
Abstract / Bemerkung
This thesis presents several new developments in the field of manifold learning and nonlinear dimensionality reduction. The main text can be divided into three parts, the first of which presents a smoothness-based regularizer that is specifically tuned to the Parametrized Self-Organizing Map (PSOM). The regularization approach makes it possible to deal with noisy or missing data in a principled manner, and it facilitates the construction of PSOMs from data that are not organized in a grid topology. In the second part, the manifold learning algorithm Unsupervised Kernel Regression (UKR) is introduced as a counterpart to the classical Nadaraya-Watson estimator. In a nutshell, UKR requires very little parameters to be chosen a priori: In its simplest form, a UKR model is fully specified by the dimensionality of latent space and the choice of a density kernel, and it can be regularized automatically by using leave-one-out cross-validation without additional computational cost. The low dimensional coordinates (latent variables) together with a mapping from latent space to data space are retrieved by minimizing some error criterion. The third part presents four possible extensions to UKR, specifically 1) a more general cross-validation scheme, aimed at avoiding unsmooth manifolds, 2) the inclusion of loss functions beyond the usual squared error, which can enhance the robustness towards outliers, and by which UKR can be tuned to specific noise levels, 3) a "landmark" variant which helps to reduce the computational cost, and 4) Unsupervised Local Polynomial Regression, where the Nadaraya-Watson estimator is replaced by local linear or local quadratic regression models, the latter showing less bias in the presence of curvature.
Jahr
PUB-ID

Zitieren

Klanke S. Learning manifolds with the Parametrized Self-Organizing Map and Unsupervised Kernel Regression. Bielefeld (Germany): Bielefeld University; 2007.
Klanke, S. (2007). Learning manifolds with the Parametrized Self-Organizing Map and Unsupervised Kernel Regression. Bielefeld (Germany): Bielefeld University.
Klanke, S. (2007). Learning manifolds with the Parametrized Self-Organizing Map and Unsupervised Kernel Regression. Bielefeld (Germany): Bielefeld University.
Klanke, S., 2007. Learning manifolds with the Parametrized Self-Organizing Map and Unsupervised Kernel Regression, Bielefeld (Germany): Bielefeld University.
S. Klanke, Learning manifolds with the Parametrized Self-Organizing Map and Unsupervised Kernel Regression, Bielefeld (Germany): Bielefeld University, 2007.
Klanke, S.: Learning manifolds with the Parametrized Self-Organizing Map and Unsupervised Kernel Regression. Bielefeld University, Bielefeld (Germany) (2007).
Klanke, Stefan. Learning manifolds with the Parametrized Self-Organizing Map and Unsupervised Kernel Regression. Bielefeld (Germany): Bielefeld University, 2007.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-03-08T13:58:34Z

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar