The Jacobson radical for analytic crossed products
Donsig AP, Katavolos A, Manoussos A (2000) .
Preprint | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Donsig, Allan P.;
Katavolos, Aristides;
Manoussos, AntoniosUniBi
Einrichtung
Abstract / Bemerkung
We characterise the (Jacobson) radical of the analytic crossed product ofC_0(X) by the non-negative integers (Z_+), answering a question first raised byArveson and Josephson in 1969. In fact, we characterise the radical of analyticcrossed products of C_0(X) by (Z_+)^d. The radical consists of all elementswhose `Fourier coefficients' vanish on the recurrent points of the dynamicalsystem (and the first one is zero). The multi-dimensional version requires avariation of the notion of recurrence, taking into account the various degreesof freedom.
Erscheinungsjahr
2000
Page URI
https://pub.uni-bielefeld.de/record/2298518
Zitieren
Donsig AP, Katavolos A, Manoussos A. The Jacobson radical for analytic crossed products. 2000.
Donsig, A. P., Katavolos, A., & Manoussos, A. (2000). The Jacobson radical for analytic crossed products
Donsig, Allan P., Katavolos, Aristides, and Manoussos, Antonios. 2000. “The Jacobson radical for analytic crossed products”.
Donsig, A. P., Katavolos, A., and Manoussos, A. (2000). The Jacobson radical for analytic crossed products.
Donsig, A.P., Katavolos, A., & Manoussos, A., 2000. The Jacobson radical for analytic crossed products.
A.P. Donsig, A. Katavolos, and A. Manoussos, “The Jacobson radical for analytic crossed products”, 2000.
Donsig, A.P., Katavolos, A., Manoussos, A.: The Jacobson radical for analytic crossed products. (2000).
Donsig, Allan P., Katavolos, Aristides, and Manoussos, Antonios. “The Jacobson radical for analytic crossed products”. (2000).