Versatile Phase Transfer of Gold Nanoparticles from Aqueous Media to Different Organic Media

Karg M, Schelero N, Oppel C, Gradzielski M, Hellweg T, von Klitzing R (2011)
Chemistry 17(16): 4648-4654.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Karg, Matthias; Schelero, Natascha; Oppel, Claudia; Gradzielski, Michael; Hellweg, ThomasUniBi ; von Klitzing, Regine
Abstract / Bemerkung
A novel, simple, and very efficient method to prepare hydrophobically modified gold particles is presented. Gold nanoparticles of different sizes and polydispersities were prepared. The diameter of the gold particles ranges from 5 to 37 nm. All systems were prepared in aqueous solution stabilized by citrate and afterwards transferred into an organic phase by using amphiphilic alkylamine ligands with different alkyl chain lengths. The chain length was varied between 8 and 18 alkyl groups. Depending on the particle size and the alkylamine, different transfer efficiencies were obtained. In some cases, the phase transfer has a yield of about 100%. After drying, the particles can be redispersed in different organic solvents. Characterization of the particles before and after transfer was performed by using UV/Vis spectroscopy, transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS) techniques. The effect of organic solvents with various refractive indices on the plasmon band position was investigated.
Stichworte
phase transitions; gold; nanoparticles; plasmon resonance; organic media
Erscheinungsjahr
2011
Zeitschriftentitel
Chemistry
Band
17
Ausgabe
16
Seite(n)
4648-4654
ISSN
0947-6539
Page URI
https://pub.uni-bielefeld.de/record/2289944

Zitieren

Karg M, Schelero N, Oppel C, Gradzielski M, Hellweg T, von Klitzing R. Versatile Phase Transfer of Gold Nanoparticles from Aqueous Media to Different Organic Media. Chemistry. 2011;17(16):4648-4654.
Karg, M., Schelero, N., Oppel, C., Gradzielski, M., Hellweg, T., & von Klitzing, R. (2011). Versatile Phase Transfer of Gold Nanoparticles from Aqueous Media to Different Organic Media. Chemistry, 17(16), 4648-4654. https://doi.org/10.1002/chem.201003340
Karg, Matthias, Schelero, Natascha, Oppel, Claudia, Gradzielski, Michael, Hellweg, Thomas, and von Klitzing, Regine. 2011. “Versatile Phase Transfer of Gold Nanoparticles from Aqueous Media to Different Organic Media”. Chemistry 17 (16): 4648-4654.
Karg, M., Schelero, N., Oppel, C., Gradzielski, M., Hellweg, T., and von Klitzing, R. (2011). Versatile Phase Transfer of Gold Nanoparticles from Aqueous Media to Different Organic Media. Chemistry 17, 4648-4654.
Karg, M., et al., 2011. Versatile Phase Transfer of Gold Nanoparticles from Aqueous Media to Different Organic Media. Chemistry, 17(16), p 4648-4654.
M. Karg, et al., “Versatile Phase Transfer of Gold Nanoparticles from Aqueous Media to Different Organic Media”, Chemistry, vol. 17, 2011, pp. 4648-4654.
Karg, M., Schelero, N., Oppel, C., Gradzielski, M., Hellweg, T., von Klitzing, R.: Versatile Phase Transfer of Gold Nanoparticles from Aqueous Media to Different Organic Media. Chemistry. 17, 4648-4654 (2011).
Karg, Matthias, Schelero, Natascha, Oppel, Claudia, Gradzielski, Michael, Hellweg, Thomas, and von Klitzing, Regine. “Versatile Phase Transfer of Gold Nanoparticles from Aqueous Media to Different Organic Media”. Chemistry 17.16 (2011): 4648-4654.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Facile phase transfer of gold nanorods and nanospheres stabilized with block copolymers.
Derikov YI, Shandryuk GA, Talroze RV, Ezhov AA, Kudryavtsev YV., Beilstein J Nanotechnol 9(), 2018
PMID: 29527437
Seed-Mediated Growth of Colloidal Metal Nanocrystals.
Xia Y, Gilroy KD, Peng HC, Xia X., Angew Chem Int Ed Engl 56(1), 2017
PMID: 27966807
The role of ligands in coinage-metal nanoparticles for electronics.
Kanelidis I, Kraus T., Beilstein J Nanotechnol 8(), 2017
PMID: 29259877
Self-healing gold mirrors and filters at liquid-liquid interfaces.
Smirnov E, Peljo P, Scanlon MD, Gumy F, Girault HH., Nanoscale 8(14), 2016
PMID: 27001646
Polymer/Nanoparticle Hybrid Materials of Precise Dimensions by Size-Exclusive Fishing of Metal Nanoparticles.
Fan Z, Serrano MK, Schaper A, Agarwal S, Greiner A., Adv Mater 27(26), 2015
PMID: 25997650
Rapid Cationization of Gold Nanoparticles by Two-Step Phase Transfer.
Hassinen J, Liljeström V, Kostiainen MA, Ras RH., Angew Chem Int Ed Engl 54(27), 2015
PMID: 26012495

37 References

Daten bereitgestellt von Europe PubMed Central.


Murray, Annu. Rev. Mater. Sci. 30(), 2000

Liz-Marzán, Photonik 2(), 2007

Contreras-Cáceres, Adv. Mater. 20(), 2008

Pérez-Juste, Coord. Chem. Rev. 249(), 2005

Liz-Marzán, Langmuir 12(), 1996

Mulvaney, Langmuir 12(), 1996

Rodríguez-Fernández, J. Phys. Chem. C 111(), 2007
Selective detection of cysteine and glutathione using gold nanorods.
Sudeep PK, Joseph ST, Thomas KG., J. Am. Chem. Soc. 127(18), 2005
PMID: 15869256

Novo, J. Phys. Chem. C 112(), 2008

Enüstün, J. Am. Chem. Soc. 85(), 1963

Pastoriza-Santos, Chem. Mater. 18(), 2006

Lofton, Adv. Funct. Mater. 15(), 2005

Malikova, Langmuir 18(), 2002

Kim, Angew. Chem. 116(), 2004
Platonic gold nanocrystals.
Kim F, Connor S, Song H, Kuykendall T, Yang P., Angew. Chem. Int. Ed. Engl. 43(28), 2004
PMID: 15248270
Optical properties of star-shaped gold nanoparticles.
Nehl CL, Liao H, Hafner JH., Nano Lett. 6(4), 2006
PMID: 16608264

Liz-Marzán, J. Mater. Chem. 16(), 2006

Sánchez-Iglesias, Adv. Mater. 18(), 2006
High-yield synthesis and optical response of gold nanostars.
Senthil Kumar P, Pastoriza-Santos I, Rodriguez-Gonzalez B, Javier Garcia de Abajo F, Liz-Marzan LM., Nanotechnology 19(1), 2007
PMID: 21730541

Lewis, Chem. Rev. 93(), 1993
Multiresponsive hybrid colloids based on gold nanorods and poly(NIPAM-co-allylacetic acid) microgels: temperature- and pH-tunable plasmon resonance.
Karg M, Lu Y, Carbo-Argibay E, Pastoriza-Santos I, Perez-Juste J, Liz-Marzan LM, Hellweg T., Langmuir 25(5), 2009
PMID: 19437719
A versatile approach for the preparation of thermosensitive PNIPAM core-shell microgels with nanoparticle cores.
Karg M, Pastoriza-Santos I, Liz-Marzan LM, Hellweg T., Chemphyschem 7(11), 2006
PMID: 17013983
Nanorod-coated PNIPAM microgels: thermoresponsive optical properties.
Karg M, Pastoriza-Santos I, Perez-Juste J, Hellweg T, Liz-Marzan LM., Small 3(7), 2007
PMID: 17487899

Kim, Polym. Mater. Sci. Eng. 90(), 2004

Kim, Macromol. Chem. Phys. 206(), 2005
Thermosensitive core-shell particles as carrier systems for metallic nanoparticles.
Lu Y, Mei Y, Ballauff M, Drechsler M., J Phys Chem B 110(9), 2006
PMID: 16509678
Hybrid microgels photoresponsive in the near-infrared spectral range.
Gorelikov I, Field LM, Kumacheva E., J. Am. Chem. Soc. 126(49), 2004
PMID: 15584708
Phase transfer of gold nanoparticles from aqueous to organic solution containing resorcinarene.
Misra TK, Chen TS, Liu CY., J Colloid Interface Sci 297(2), 2005
PMID: 16343525

Kumar, J. Chem. Sci. 116(), 2004
Phase transfer of silver nanoparticles from aqueous to organic solutions using fatty amine molecules.
Kumar A, Joshi H, Pasricha R, Mandale AB, Sastry M., J Colloid Interface Sci 264(2), 2003
PMID: 16256657
Investigation into the Interaction between Surface-Bound Alkylamines and Gold Nanoparticles.
Kumar A, Mandal S, Selvakannan PR, Pasricha R, Mandale AB, Sastry M., Langmuir 19(15), 2003
PMID: 28198630

Mayya, Langmuir 19(), 2003

Jana, Langmuir 17(), 2001
The size distribution of 'gold standard' nanoparticles.
Bienert R, Emmerling F, Thunemann AF., Anal Bioanal Chem 395(6), 2009
PMID: 19756546
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21433128
PubMed | Europe PMC

Suchen in

Google Scholar