Conversion of Self-Assembled Monolayers into Nanocrystalline Graphene: Structure and Electric Transport

Turchanin A, Weber D, Bueenfeld M, Kisielowski C, Fistul MV, Efetov KB, Weimann T, Stosch R, Mayer J, Gölzhäuser A (2011)
ACS Nano 5(5): 3896-3904.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Turchanin, AndreyUniBi; Weber, Dirk; Bueenfeld, Matthias; Kisielowski, Christian; Fistul, Mikhail V.; Efetov, Konstantin B.; Weimann, Thomas; Stosch, Rainer; Mayer, Joachim; Gölzhäuser, ArminUniBi
Abstract / Bemerkung
Graphene-based materials have been suggested for applications ranging from nanoelectronics to nanobiotechnology. However, the realization of graphene-based technologies will require large quantities of free-standing two-dimensional (2D) carbon materials with tunable physical and chemical properties. Bottom-up approaches via molecular self-assembly have great potential to fulfill this demand. Here, we report on the fabrication and characterization of graphene made by electron-radiation induced cross-linking of aromatic self-assembled monolayers (SAMs) and their subsequent annealing. In this process, the SAM is converted into a nanocrystalline graphene sheet with well-defined thickness and arbitrary dimensions. Electric transport data demonstrate that this transformation is accompanied by an insulator to metal transition that can be utilized to control electrical properties such as conductivity, electron mobility, and ambipolar electric field effect of the fabricated graphene sheets. The suggested route opens broad prospects toward the engineering of free-standing 2D carbon materials with tunable properties on various solid substrates and on holey substrates as suspended membranes.
Stichworte
electron microscopy; insulator-metal transition; electric transport; structural transformation; graphene synthesis; molecular self-assembly
Erscheinungsjahr
2011
Zeitschriftentitel
ACS Nano
Band
5
Ausgabe
5
Seite(n)
3896-3904
ISSN
1936-0851
eISSN
1936-086X
Page URI
https://pub.uni-bielefeld.de/record/2289824

Zitieren

Turchanin A, Weber D, Bueenfeld M, et al. Conversion of Self-Assembled Monolayers into Nanocrystalline Graphene: Structure and Electric Transport. ACS Nano. 2011;5(5):3896-3904.
Turchanin, A., Weber, D., Bueenfeld, M., Kisielowski, C., Fistul, M. V., Efetov, K. B., Weimann, T., et al. (2011). Conversion of Self-Assembled Monolayers into Nanocrystalline Graphene: Structure and Electric Transport. ACS Nano, 5(5), 3896-3904. https://doi.org/10.1021/nn200297n
Turchanin, Andrey, Weber, Dirk, Bueenfeld, Matthias, Kisielowski, Christian, Fistul, Mikhail V., Efetov, Konstantin B., Weimann, Thomas, Stosch, Rainer, Mayer, Joachim, and Gölzhäuser, Armin. 2011. “Conversion of Self-Assembled Monolayers into Nanocrystalline Graphene: Structure and Electric Transport”. ACS Nano 5 (5): 3896-3904.
Turchanin, A., Weber, D., Bueenfeld, M., Kisielowski, C., Fistul, M. V., Efetov, K. B., Weimann, T., Stosch, R., Mayer, J., and Gölzhäuser, A. (2011). Conversion of Self-Assembled Monolayers into Nanocrystalline Graphene: Structure and Electric Transport. ACS Nano 5, 3896-3904.
Turchanin, A., et al., 2011. Conversion of Self-Assembled Monolayers into Nanocrystalline Graphene: Structure and Electric Transport. ACS Nano, 5(5), p 3896-3904.
A. Turchanin, et al., “Conversion of Self-Assembled Monolayers into Nanocrystalline Graphene: Structure and Electric Transport”, ACS Nano, vol. 5, 2011, pp. 3896-3904.
Turchanin, A., Weber, D., Bueenfeld, M., Kisielowski, C., Fistul, M.V., Efetov, K.B., Weimann, T., Stosch, R., Mayer, J., Gölzhäuser, A.: Conversion of Self-Assembled Monolayers into Nanocrystalline Graphene: Structure and Electric Transport. ACS Nano. 5, 3896-3904 (2011).
Turchanin, Andrey, Weber, Dirk, Bueenfeld, Matthias, Kisielowski, Christian, Fistul, Mikhail V., Efetov, Konstantin B., Weimann, Thomas, Stosch, Rainer, Mayer, Joachim, and Gölzhäuser, Armin. “Conversion of Self-Assembled Monolayers into Nanocrystalline Graphene: Structure and Electric Transport”. ACS Nano 5.5 (2011): 3896-3904.

22 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Evidence of a two-dimensional glass transition in graphene: Insights from molecular simulations.
Ravinder R, Kumar R, Agarwal M, Krishnan NMA., Sci Rep 9(1), 2019
PMID: 30872750
Formation of nanocrystalline graphene on germanium.
Yekani R, Rusak E, Riaz A, Felten A, Breitung B, Dehm S, Perera D, Rohrer J, Rockstuhl C, Krupke R., Nanoscale 10(25), 2018
PMID: 29916516
Realization of continuous Zachariasen carbon monolayer.
Joo WJ, Lee JH, Jang Y, Kang SG, Kwon YN, Chung J, Lee S, Kim C, Kim TH, Yang CW, Kim UJ, Choi BL, Whang D, Hwang SW., Sci Adv 3(2), 2017
PMID: 28246635
Photofunctionality in Porphyrin-Hybridized Bis(dipyrrinato)zinc(II) Complex Micro- and Nanosheets.
Sakamoto R, Yagi T, Hoshiko K, Kusaka S, Matsuoka R, Maeda H, Liu Z, Liu Q, Wong WY, Nishihara H., Angew Chem Int Ed Engl 56(13), 2017
PMID: 28240405
Understanding the graphitization and growth of free-standing nanocrystalline graphene using in situ transmission electron microscopy.
Shyam Kumar CN, Chakravadhanula VSK, Riaz A, Dehm S, Wang D, Mu X, Flavel B, Krupke R, Kübel C., Nanoscale 9(35), 2017
PMID: 28799608
Direct Growth of Patterned Graphene.
Weber NE, Wundrack S, Stosch R, Turchanin A., Small 12(11), 2016
PMID: 26765943
One-pot fabricating Fe3O4/graphene nanocomposite with excellent biocompatibility and non-toxicity as a negative MR contrast agent.
Zan P, Yang C, Sun H, Zhao L, Lv Z, He Y., Colloids Surf B Biointerfaces 145(), 2016
PMID: 27182656
Carbon Nanomembranes.
Turchanin A, Gölzhäuser A., Adv Mater 28(29), 2016
PMID: 27281234
Templating for hierarchical structure control in carbon materials.
Schrettl S, Schulte B, Frauenrath H., Nanoscale 8(45), 2016
PMID: 27827511
The statistical mechanics of dynamic pathways to self-assembly.
Whitelam S, Jack RL., Annu Rev Phys Chem 66(), 2015
PMID: 25493714
Toward Two-Dimensional All-Carbon Heterostructures via Ion Beam Patterning of Single-Layer Graphene.
Kotakoski J, Brand C, Lilach Y, Cheshnovsky O, Mangler C, Arndt M, Meyer JC., Nano Lett 15(9), 2015
PMID: 26161575
Imaging of carbon nanomembranes with helium ion microscopy.
Beyer A, Vieker H, Klett R, Meyer Zu Theenhausen H, Angelova P, Gölzhäuser A., Beilstein J Nanotechnol 6(), 2015
PMID: 26425423
A facile molten-salt route to graphene synthesis.
Liu X, Giordano C, Antonietti M., Small 10(1), 2014
PMID: 23847138
Carbon nanomembranes (CNMs) supported by polymer: mechanics and gas permeation.
Ai M, Shishatskiy S, Wind J, Zhang X, Nottbohm CT, Mellech N, Winter A, Vieker H, Qiu J, Dietz KJ, Gölzhäuser A, Beyer A., Adv Mater 26(21), 2014
PMID: 24535992
The intriguing reaction of aromatic sulfonyl phthalimides with gold surfaces.
Koczkur KM, Hamed EM, Hesp CR, Houmam A., Phys Chem Chem Phys 15(1), 2013
PMID: 23168907
Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapour deposition.
Sokolov AN, Yap FL, Liu N, Kim K, Ci L, Johnson OB, Wang H, Vosgueritchian M, Koh AL, Chen J, Park J, Bao Z., Nat Commun 4(), 2013
PMID: 23989553
Synthesis of monolayer-patched graphene from glucose.
Li XH, Kurasch S, Kaiser U, Antonietti M., Angew Chem Int Ed Engl 51(38), 2012
PMID: 22907631
Graphene from molecules.
Gölzhäuser A., Angew Chem Int Ed Engl 51(44), 2012
PMID: 23002002
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21491948
PubMed | Europe PMC

arXiv: 1105.5794

Suchen in

Google Scholar