Continuous-flow separation of nanoparticles by electrostatic sieving at a micro-nanofluidic interface
Regtmeier J, Käsewieter J, Everwand M, Anselmetti D (2011)
Journal of Separation Science 34(10): 1180-1183.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
Continuous-flow separation of nanoparticles (NPs) (15 and 39 nm) is demonstrated based on electrostatic sieving at a micro-nanofluidic interface. The interface is realized in a poly(dimethylsiloxane) device with a nanoslit of 525 nm laterally spanning the microfluidic channel (aspect ratio of 540:1). Within this nanoslit, the Debye layers overlap and generate an electrostatic sieve. This was exploited to selectively deflect and sort NPs with a sorting purity of up to 97%. Because of the continuous-flow operation, the sample is continuously fed into the device, immediately separated, and the parameters can be adapted in real time. For bioanalytical purposes, we also demonstrate the deflection of proteins (longest axis 6.8 nm). The continuous operation mode and the general applicability of this separation concept make this method a valuable addition to the current Lab-on-a-Chip devices for continuous sorting of NPs and macromolecules.
Stichworte
Proteins;
Electrostatic sieving;
Debye layer overlap;
Continuous-flow separation;
Nanoparticles
Erscheinungsjahr
2011
Zeitschriftentitel
Journal of Separation Science
Band
34
Ausgabe
10
Seite(n)
1180-1183
ISSN
1615-9306
Page URI
https://pub.uni-bielefeld.de/record/2289735
Zitieren
Regtmeier J, Käsewieter J, Everwand M, Anselmetti D. Continuous-flow separation of nanoparticles by electrostatic sieving at a micro-nanofluidic interface. Journal of Separation Science. 2011;34(10):1180-1183.
Regtmeier, J., Käsewieter, J., Everwand, M., & Anselmetti, D. (2011). Continuous-flow separation of nanoparticles by electrostatic sieving at a micro-nanofluidic interface. Journal of Separation Science, 34(10), 1180-1183. https://doi.org/10.1002/jssc.201100007
Regtmeier, Jan, Käsewieter, Jörg, Everwand, Martina, and Anselmetti, Dario. 2011. “Continuous-flow separation of nanoparticles by electrostatic sieving at a micro-nanofluidic interface”. Journal of Separation Science 34 (10): 1180-1183.
Regtmeier, J., Käsewieter, J., Everwand, M., and Anselmetti, D. (2011). Continuous-flow separation of nanoparticles by electrostatic sieving at a micro-nanofluidic interface. Journal of Separation Science 34, 1180-1183.
Regtmeier, J., et al., 2011. Continuous-flow separation of nanoparticles by electrostatic sieving at a micro-nanofluidic interface. Journal of Separation Science, 34(10), p 1180-1183.
J. Regtmeier, et al., “Continuous-flow separation of nanoparticles by electrostatic sieving at a micro-nanofluidic interface”, Journal of Separation Science, vol. 34, 2011, pp. 1180-1183.
Regtmeier, J., Käsewieter, J., Everwand, M., Anselmetti, D.: Continuous-flow separation of nanoparticles by electrostatic sieving at a micro-nanofluidic interface. Journal of Separation Science. 34, 1180-1183 (2011).
Regtmeier, Jan, Käsewieter, Jörg, Everwand, Martina, and Anselmetti, Dario. “Continuous-flow separation of nanoparticles by electrostatic sieving at a micro-nanofluidic interface”. Journal of Separation Science 34.10 (2011): 1180-1183.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
3 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Real-time modulated nanoparticle separation with an ultra-large dynamic range.
Zeming KK, Thakor NV, Zhang Y, Chen CH., Lab Chip 16(1), 2016
PMID: 26575003
Zeming KK, Thakor NV, Zhang Y, Chen CH., Lab Chip 16(1), 2016
PMID: 26575003
Advancements in microfluidics for nanoparticle separation.
Salafi T, Zeming KK, Zhang Y., Lab Chip 17(1), 2016
PMID: 27830852
Salafi T, Zeming KK, Zhang Y., Lab Chip 17(1), 2016
PMID: 27830852
Fundamental studies of nanofluidics: nanopores, nanochannels, and nanopipets.
Haywood DG, Saha-Shah A, Baker LA, Jacobson SC., Anal Chem 87(1), 2015
PMID: 25405581
Haywood DG, Saha-Shah A, Baker LA, Jacobson SC., Anal Chem 87(1), 2015
PMID: 25405581
17 References
Daten bereitgestellt von Europe PubMed Central.
Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology.
Daniel MC, Astruc D., Chem. Rev. 104(1), 2004
PMID: 14719978
Daniel MC, Astruc D., Chem. Rev. 104(1), 2004
PMID: 14719978
Mesocrystals--ordered nanoparticle superstructures.
Song RQ, Colfen H., Adv. Mater. Weinheim 22(12), 2010
PMID: 20437477
Song RQ, Colfen H., Adv. Mater. Weinheim 22(12), 2010
PMID: 20437477
Zorbas, 2010
Rapid, highly efficient extraction and purification of membrane proteins using a microfluidic continuous-flow based aqueous two-phase system.
Hu R, Feng X, Chen P, Fu M, Chen H, Guo L, Liu BF., J Chromatogr A 1218(1), 2010
PMID: 21112057
Hu R, Feng X, Chen P, Fu M, Chen H, Guo L, Liu BF., J Chromatogr A 1218(1), 2010
PMID: 21112057
A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins.
Fu J, Schoch RB, Stevens AL, Tannenbaum SR, Han J., Nat Nanotechnol 2(2), 2007
PMID: 18654231
Fu J, Schoch RB, Stevens AL, Tannenbaum SR, Han J., Nat Nanotechnol 2(2), 2007
PMID: 18654231
Schoch, Rev. Mod. Phys. 80(), 2008
Analytic theory for dilute colloids in a charged slit.
Gillespie D., J Phys Chem B 114(12), 2010
PMID: 20210321
Gillespie D., J Phys Chem B 114(12), 2010
PMID: 20210321
Smith, J. Colloid Interface Sci. 91(), 1983
Bruus, 2007
AUTHOR UNKNOWN, 0
Giddings, 1991
Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel.
Kim SJ, Wang YC, Lee JH, Jang H, Han J., Phys. Rev. Lett. 99(4), 2007
PMID: 17678369
Kim SJ, Wang YC, Lee JH, Jang H, Han J., Phys. Rev. Lett. 99(4), 2007
PMID: 17678369
Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip.
Plecis A, Schoch RB, Renaud P., Nano Lett. 5(6), 2005
PMID: 15943459
Plecis A, Schoch RB, Renaud P., Nano Lett. 5(6), 2005
PMID: 15943459
Hänggi, Rev. Mod. Phys. 62(), 1990
Pohl, 1978
Structural origins of high-affinity biotin binding to streptavidin.
Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR., Science 243(4887), 1989
PMID: 2911722
Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR., Science 243(4887), 1989
PMID: 2911722
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 21442752
PubMed | Europe PMC
Suchen in