Space Use of Bumblebees (Bombus spp.) Revealed by Radio-Tracking

Hagen M, Wikelski M, Kissling WD (2011)
PLoS ONE 6(5): e19997.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hagen, MelanieUniBi; Wikelski, Martin; Kissling, W. Daniel
Abstract / Bemerkung
Background: Accurate estimates of movement behavior and distances travelled by animals are difficult to obtain, especially for small-bodied insects where transmitter weights have prevented the use of radio-tracking. Methodology/Principal Findings: Here, we report the first successful use of micro radio telemetry to track flight distances and space use of bumblebees. Using ground surveys and Cessna overflights in a Central European rural landscape mosaic we obtained maximum flight distances of 2.5 km, 1.9 km and 1.3 km for Bombus terrestris (workers), Bombus ruderatus (worker), and Bombus hortorum (young queens), respectively. Bumblebee individuals used large areas (0.25-43.53 ha) within one or a few days. Habitat analyses of one B. hortorum queen at the landscape scale indicated that gardens within villages were used more often than expected from habitat availability. Detailed movement trajectories of this individual revealed that prominent landscape structures (e. g. trees) and flower patches were repeatedly visited. However, we also observed long (i.e. >45 min) resting periods between flights (B. hortorum) and differences in flower-handling between bumblebees with and without transmitters (B. terrestris) suggesting that the current weight of transmitters (200 mg) may still impose significant energetic costs on the insects. Conclusions/Significance: Spatio-temporal movements of bumblebees can now be tracked with telemetry methods. Our measured flight distances exceed many previous estimates of bumblebee foraging ranges and suggest that travelling long distances to food resources may be common. However, even the smallest currently available transmitters still appear to compromise flower handling performance and cause an increase in resting behavior of bees. Future reductions of transmitter mass and size could open up new avenues for quantifying landscape-scale space use of insect pollinators and could provide novel insights into the behavior and requirements of bumblebees during critical life stages, e. g. when searching for mates, nest locations or hibernation sites.
Erscheinungsjahr
2011
Zeitschriftentitel
PLoS ONE
Band
6
Ausgabe
5
Art.-Nr.
e19997
ISSN
1932-6203
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2289708

Zitieren

Hagen M, Wikelski M, Kissling WD. Space Use of Bumblebees (Bombus spp.) Revealed by Radio-Tracking. PLoS ONE. 2011;6(5): e19997.
Hagen, M., Wikelski, M., & Kissling, W. D. (2011). Space Use of Bumblebees (Bombus spp.) Revealed by Radio-Tracking. PLoS ONE, 6(5), e19997. https://doi.org/10.1371/journal.pone.0019997
Hagen, Melanie, Wikelski, Martin, and Kissling, W. Daniel. 2011. “Space Use of Bumblebees (Bombus spp.) Revealed by Radio-Tracking”. PLoS ONE 6 (5): e19997.
Hagen, M., Wikelski, M., and Kissling, W. D. (2011). Space Use of Bumblebees (Bombus spp.) Revealed by Radio-Tracking. PLoS ONE 6:e19997.
Hagen, M., Wikelski, M., & Kissling, W.D., 2011. Space Use of Bumblebees (Bombus spp.) Revealed by Radio-Tracking. PLoS ONE, 6(5): e19997.
M. Hagen, M. Wikelski, and W.D. Kissling, “Space Use of Bumblebees (Bombus spp.) Revealed by Radio-Tracking”, PLoS ONE, vol. 6, 2011, : e19997.
Hagen, M., Wikelski, M., Kissling, W.D.: Space Use of Bumblebees (Bombus spp.) Revealed by Radio-Tracking. PLoS ONE. 6, : e19997 (2011).
Hagen, Melanie, Wikelski, Martin, and Kissling, W. Daniel. “Space Use of Bumblebees (Bombus spp.) Revealed by Radio-Tracking”. PLoS ONE 6.5 (2011): e19997.

30 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Harmonic radar tracking reveals random dispersal pattern of bumblebee (Bombus terrestris) queens after hibernation.
Makinson JC, Woodgate JL, Reynolds A, Capaldi EA, Perry CJ, Chittka L., Sci Rep 9(1), 2019
PMID: 30894590
A Pilot Radio Telemetry Field Study of Triatomine Vectors (Hemiptera: Reduviidae) of the Chagas Disease Parasite.
Hamer GL, Bejcek JR, Valdez EA, Curtis-Robles R, Hamer SA., J Med Entomol 55(6), 2018
PMID: 29986045
Use of habitat odour by host-seeking insects.
Webster B, Cardé RT., Biol Rev Camb Philos Soc 92(2), 2017
PMID: 27145528
Novel Consequences of Bird Pollination for Plant Mating.
Krauss SL, Phillips RD, Karron JD, Johnson SD, Roberts DG, Hopper SD., Trends Plant Sci 22(5), 2017
PMID: 28412035
Using accelerometry to compare costs of extended migration in an arctic herbivore.
Weegman MD, Bearhop S, Hilton GM, Walsh AJ, Griffin L, Resheff YS, Nathan R, David Fox A., Curr Zool 63(6), 2017
PMID: 29492028
Forecasting Ecological Genomics: High-Tech Animal Instrumentation Meets High-Throughput Sequencing.
Shafer AB, Northrup JM, Wikelski M, Wittemyer G, Wolf JB., PLoS Biol 14(1), 2016
PMID: 26745372
Effects of habitat composition and landscape structure on worker foraging distances of five bumble bee species.
Redhead JW, Dreier S, Bourke AF, Heard MS, Jordan WC, Sumner S, Wang J, Carvell C., Ecol Appl 26(3), 2016
PMID: 27411246
The BAARA (Biological AutomAted RAdiotracking) system: a new approach in ecological field studies.
Řeřucha Š, Bartonička T, Jedlička P, Čížek M, Hlouša O, Lučan R, Horáček I., PLoS One 10(2), 2015
PMID: 25714910
Molecular tools and bumble bees: revealing hidden details of ecology and evolution in a model system.
Woodard SH, Lozier JD, Goulson D, Williams PH, Strange JP, Jha S., Mol Ecol 24(12), 2015
PMID: 25865395
High genetic diversity declines towards the geographic range periphery of Adonis vernalis, a Eurasian dry grassland plant.
Hirsch H, Wagner V, Danihelka J, Ruprecht E, Sánchez-Gómez P, Seifert M, Hensen I., Plant Biol (Stuttg) 17(6), 2015
PMID: 26122089
Challenges and prospects in the telemetry of insects.
Daniel Kissling W, Pattemore DE, Hagen M., Biol Rev Camb Philos Soc 89(3), 2014
PMID: 24106908
Evaluating pollination deficits in pumpkin production in New York.
Petersen JD, Huseth AS, Nault BA., Environ Entomol 43(5), 2014
PMID: 25198126
Resource diversity and landscape-level homogeneity drive native bee foraging.
Jha S, Kremen C., Proc Natl Acad Sci U S A 110(2), 2013
PMID: 23267118
Bumblebee community homogenization after uphill shifts in montane areas of northern Spain.
Ploquin EF, Herrera JM, Obeso JR., Oecologia 173(4), 2013
PMID: 23852029
Landscape composition has limited impact on local genetic structure in mountain clover, Trifolium montanum L.
Hahn T, Kettle CJ, Ghazoul J, Hennig EI, Pluess AR., J Hered 104(6), 2013
PMID: 24064981
Species distribution models for crop pollination: a modelling framework applied to Great Britain.
Polce C, Termansen M, Aguirre-Gutiérrez J, Boatman ND, Budge GE, Crowe A, Garratt MP, Pietravalle S, Potts SG, Ramirez JA, Somerwill KE, Biesmeijer JC., PLoS One 8(10), 2013
PMID: 24155899
Bumble bee pollen use and preference across spatial scales in human‐altered landscapes
JHA S, STEFANOVICH L, KREMEN C., Ecol Entomol 38(6), 2013
PMID: IND500704090
Application of the unified species concept reveals distinct lineages for disjunct endemics of the Brassica repanda (Brassicaceae) complex
LEGA M, FIOR S, PROSSER F, BERTOLLI A, LI M, VAROTTO C., Biol J Linn Soc Lond 106(3), 2012
PMID: IND44734160
Individual lifetime pollen and nectar foraging preferences in bumble bees.
Hagbery J, Nieh JC., Naturwissenschaften 99(10), 2012
PMID: 22965265

60 References

Daten bereitgestellt von Europe PubMed Central.

A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar.
Osborne JL, Clark SJ, Morris RJ, Williams IH, Riley JR., 1999
Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances.
Pasquet RS, Peltier A, Hufford MB, Oudin E, Saulnier J, Paul L, Knudsen JT, Herren HR, Gepts P., Proc. Natl. Acad. Sci. U.S.A. 105(36), 2008
PMID: 18768793
Importance of pollinators in changing landscapes for world crops.
Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA., 2007
Crop pollination from native bees at risk from agricultural intensification.
Kremen C, Williams NM, Thorp RW., Proc. Natl. Acad. Sci. U.S.A. 99(26), 2002
PMID: 12486221
The conservation of bees: a global perspective.
Brown MJF, Paxton RJ., 2009
Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands.
Biesmeijer JC, Roberts SP, Reemer M, Ohlemuller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE., Science 313(5785), 2006
PMID: 16857940
Effects of habitat isolation on pollinator communities and seed set.
Steffan-Dewenter I, Tscharntke T., Oecologia 121(3), 1999
PMID: 28308334
Bees and the pollination of crops and wild flowers in the European Community.
Corbet SA, Williams IH, Osborne JL., 1991
Decline and conservation of bumble bees.
Goulson D, Lye GC, Darvill B., Annu. Rev. Entomol. 53(), 2008
PMID: 17803456
Assessing the value of annual and perennial forage mixtures for bumblebees by direct observation and pollen analysis.
Carvell C, Westrich P, Meek WR, Pywell RF, Nowakowski M., 2006
Bumblebees - behaviour and ecology
Goulson D., 2010
Effects of introduced bees on native ecosystems.
Goulson D., 2003
Plight of the bumble bee: pathogen spillover from commercial to wild populations.
Colla SR, Otterstatter MC, Gegear RJ, Thomson JD., 2006
Bumblebee flight distances in relation to the forage landscape.
Osborne JL, Martin AP, Carreck NL, Swain JL, Knight ME, Goulson D, Hale RJ, Sanderson RA., J Anim Ecol 77(2), 2007
PMID: 17986207
Large-range movements of neotropical orchid bees observed via radio telemetry.
Wikelski M, Moxley J, Eaton-Mordas A, Lopez-Uribe MM, Holland R, Moskowitz D, Roubik DW, Kays R., PLoS ONE 5(5), 2010
PMID: 20520813
An annotated checklist of bumble bees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini).
Williams P., 1998
The distribution of bumblebee colour patterns worldwide: possible significance for thermo regulation, crypsis, and warning mimicry.
Williams P., 2007
Bumblebee vulnerability and conservation world-wide.
Williams PH, Osborne JL., 2009
Bumblebee vulnerability: common correlates of winners and losers across three continents.
Williams P, Colla S, Xie Z., Conserv. Biol. 23(4), 2009
PMID: 19245487
Foraging ranges of solitary bees.
Gathmann A, Tscharntke T., 2002
Foraging trip duration and density of mega chilid bees, eumenid wasps and pompilid wasps in tropical agroforestry systems.
Klein AM, Steffan-Dewenter I, Tscharntke T., 2004
Homing ability of the bumblebeeBombus terrestris (Hymenoptera: Apidae).
Goulson D, Stout JC., 2001
Foraging distances of Bombus muscorum, Bombus lapidarius, and Bombus terrestris (Hymenoptera, Apidae).
Walther-Hellwig K, Frankl R., Journal of insect behavior. 13(2), 2000
PMID: IND22298818
Do bumblebees (Hymenoptera: Apidae) really forage close to their nests?
Dramstad WE., Journal of insect behavior. 9(2), 1996
PMID: IND20527722
Bumblebee movement in a fragmented agricultural landscape.
Saville NM, Dramstad WE, Fry GLA, Corbet SA., 1997
Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances
Zurbuchen Antonia, Landert Lisa, Klaiber Jeannine, Muller Andreas, Hein Silke, Dorn Silvia., Biol. Conserv. 143(3), 2010
PMID: IND44332208
Are forests potential landscape barriers for foraging bumblebees? Landscape scale experiments with Bombus terrestrisagg. andBombus pascuorum (Hymenoptera, Apidae).
Kreyer D, Oed A, Walther-Hellwig K, Frankl R., 2004
Foraging habitats and foraging distances of bumblebees, Bombus spp. (Hym., Apidae), in an agricultural landscape.
Walther-Hellwig K, Frankl R., 2000
Use of genetic markers to quantify bumblebee foraging range and nest density.
Darvill B, Knight ME, Goulson D., 2004
An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species.
Knight ME, Martin AP, Bishop S, Osborne JL, Hale RJ, Sanderson RA, Goulson D., Mol. Ecol. 14(6), 2005
PMID: 15836652
Harmonic radar as a means of tracking the pheromone-finding and pheromone-following flight of male moths.
Riley JR, Valeur P, Smith AD, Reynolds DR, Poppy GM, Lofstedt C., Journal of insect behavior. 11(2), 1998
PMID: IND21238786
Bee foraging ranges and their relationship to body size.
Greenleaf SS, Williams NM, Winfree R, Kremen C., Oecologia 153(3), 2007
PMID: 17483965
Distinguishing females of the bumble bees Bombus ruderatus (F.) from Bombus hortorum (L.) in Britain: a preliminary application of quantitative techniques.
Williams P, Hernandez L., 2000
Estimation of bee size using intertegular span (Apoidea).
Cane JH., J. Kans. Entomol. Soc. 60(1), 1987
PMID: IND87040205
Photoperiodic influence on the body mass of bumblebee, Bombus terrestris and its copulation duration.
Amin MR, Kwon YJ, Suh SJ., 2007
Wildlife radio tagging: equipment, field techniques and data analysis
Kenward R., 1987
Analysis of wildlife radio-tracking data.
White GC, Garrott RA., 1990
A new convex hull algorithm for planar sets.
Eddy WF., 1977
ArcView 3.x extensions. Jenness Enterprises.
Jenness J., 2008
Bumblebee economics.
Heinrich B., 1979
Trapline foraging by bumblebees .1. Persistence of flight-path geometry.
Thomson JD., 1996
Patch use by bumblebees (Hymenoptera Apidae): temperature, wind, flower density and traplining.
Comba L., 1999
Travel optimization by foraging bumblebees through readjustments of traplines after discovery of new feeding locations.
Lihoreau M, Chittka L, Raine NE., 2010
Factors determining volume of sugar solution bees and wasps collect per trip at food source.
Pflumm W., 1977
Estimation of bumblebee queen dispersal distances using sibship reconstruction method.
Lepais O, Darvill B, O'Connor S, Osborne JL, Sanderson RA, Cussans J, Goffe L, Goulson D., Mol. Ecol. 19(4), 2010
PMID: 20089127
Male flight distance and population substructure in the bumblebee Bombus terrestris.
Kraus FB, Wolf S, Moritz RF., J Anim Ecol 78(1), 2009
PMID: 19120605
Behavioral, ecological, and physiological determinants of the activity patterns of bees.
Willmer PG, Stone GN., 2004
The correlation of learning speed and natural foraging success in bumble-bees.
Raine NE, Chittka L., Proc. Biol. Sci. 275(1636), 2008
PMID: 18198141
Mass flowering crops enhance pollinator densities at a landscape scale.
Westphal C, Steffan-Dewenter I, Tscharntke T., 2003
Bee diversity and abundance in an urban setting.
Tommasi D, Miro A, Higo HA, Winston ML., 2004
Urban habitats for bees: the example of the city of Berlin.
Saure C., 1996
Ecological patterns of bees and their host ornamental flowers in two northern California cities.
Frankie GW, Thorp RW, Schindler M, Hernandez J, Ertter B, Rizzardi M., J. Kans. Entomol. Soc. 78(3), 2005
PMID: IND43760087
Bumble bee abundance in New York City community gardens: implications for urban agriculture.
Matteson KC, Langellotto GA., 2009
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21603569
PubMed | Europe PMC

Suchen in

Google Scholar