C-H Activation versus Yttrium-Methyl Cation Formation from [Y(AlMe4)(3)] Induced by Cyclic Polynitrogen Bases: Solvent and Substituent-Size Effects

Bojer D, Venugopal A, Mix A, Neumann B, Stammler H-G, Mitzel NW (2011)
Chemistry 17(22): 6248-6255.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The reaction of 1,3,5-triisopropyl- 1,3,5-triazacyclohexane (TiPTAC) with [Y(AlMe4)(3)] resulted in the formation of [(TiPTAC) Y(Me3AlCH2AlMe3)(mu-MeAlMe3)] by C-H activation and methane extrusion. In contrast, the presence of bulkier cyclohexyl groups on the nitrogen atoms in 1,3,5-tricyclohexyl-1,3,5-triazacyclohexane (TCyTAC) led to the formation of the cationic dimethyl complex [(TCyTAC)(2)YMe2][AlMe4]. The investigations reveal a dependency of the reaction mechanism on the steric bulk of the N-alkyl entity and the solvent employed. In toluene C-H activation was observed in reactions of [Y(AlMe4)(3)] with 1,3,5-trimethyl-1,3,5-triazacyclohexane (TMTAC) and TiPTAC. In THF molecular dimethyl cations, such as [(TCyTAC)(2)YMe2] [AlMe4], [(TMTAC)(2)YMe2][AlMe4] and [(TiPTAC)(2)YMe2][AlMe4], could be synthesised by addition of the triazacyclohexane at a later stage. The THF-solvated complex [YMe2(thf)(5)][AlMe4] could be isolated and represents an intermediate in these reactions. It shows that cationic methyl complexes of the rare-earth metals can be formed by donor-induced cleavage of the rare-earth-metal tetramethylaluminates. The compounds were characterised by single-crystal X-ray diffraction or multinuclear and variable-temperature NMR spectroscopy, as well as elemental analyses. Variable-temperature NMR spectroscopy illustrates the methyl group exchange processes between the cations and anions in solution.
Stichworte
C-H activation; cations; nitrogen structure elucidation; yttrium; Lewis bases
Erscheinungsjahr
2011
Zeitschriftentitel
Chemistry
Band
17
Ausgabe
22
Seite(n)
6248-6255
ISSN
0947-6539
Page URI
https://pub.uni-bielefeld.de/record/2289453

Zitieren

Bojer D, Venugopal A, Mix A, Neumann B, Stammler H-G, Mitzel NW. C-H Activation versus Yttrium-Methyl Cation Formation from [Y(AlMe4)(3)] Induced by Cyclic Polynitrogen Bases: Solvent and Substituent-Size Effects. Chemistry. 2011;17(22):6248-6255.
Bojer, D., Venugopal, A., Mix, A., Neumann, B., Stammler, H. - G., & Mitzel, N. W. (2011). C-H Activation versus Yttrium-Methyl Cation Formation from [Y(AlMe4)(3)] Induced by Cyclic Polynitrogen Bases: Solvent and Substituent-Size Effects. Chemistry, 17(22), 6248-6255. https://doi.org/10.1002/chem.201003317
Bojer, Daniel, Venugopal, Ajay, Mix, Andreas, Neumann, Beate, Stammler, Hans-Georg, and Mitzel, Norbert W. 2011. “C-H Activation versus Yttrium-Methyl Cation Formation from [Y(AlMe4)(3)] Induced by Cyclic Polynitrogen Bases: Solvent and Substituent-Size Effects”. Chemistry 17 (22): 6248-6255.
Bojer, D., Venugopal, A., Mix, A., Neumann, B., Stammler, H. - G., and Mitzel, N. W. (2011). C-H Activation versus Yttrium-Methyl Cation Formation from [Y(AlMe4)(3)] Induced by Cyclic Polynitrogen Bases: Solvent and Substituent-Size Effects. Chemistry 17, 6248-6255.
Bojer, D., et al., 2011. C-H Activation versus Yttrium-Methyl Cation Formation from [Y(AlMe4)(3)] Induced by Cyclic Polynitrogen Bases: Solvent and Substituent-Size Effects. Chemistry, 17(22), p 6248-6255.
D. Bojer, et al., “C-H Activation versus Yttrium-Methyl Cation Formation from [Y(AlMe4)(3)] Induced by Cyclic Polynitrogen Bases: Solvent and Substituent-Size Effects”, Chemistry, vol. 17, 2011, pp. 6248-6255.
Bojer, D., Venugopal, A., Mix, A., Neumann, B., Stammler, H.-G., Mitzel, N.W.: C-H Activation versus Yttrium-Methyl Cation Formation from [Y(AlMe4)(3)] Induced by Cyclic Polynitrogen Bases: Solvent and Substituent-Size Effects. Chemistry. 17, 6248-6255 (2011).
Bojer, Daniel, Venugopal, Ajay, Mix, Andreas, Neumann, Beate, Stammler, Hans-Georg, and Mitzel, Norbert W. “C-H Activation versus Yttrium-Methyl Cation Formation from [Y(AlMe4)(3)] Induced by Cyclic Polynitrogen Bases: Solvent and Substituent-Size Effects”. Chemistry 17.22 (2011): 6248-6255.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Methyl Complexes of the Transition Metals.
Campos J, López-Serrano J, Peloso R, Carmona E., Chemistry 22(19), 2016
PMID: 26991740
Yttrium Siloxide Complexes Bearing Terminal Methyl Ligands: Molecular Models for Ln-CH3 Terminated Silica Surfaces.
Dettenrieder N, Dietrich HM, Maichle-Mössmer C, Anwander R., Chemistry 22(37), 2016
PMID: 27492852
Rare-earth-metal methyl, amide, and imide complexes supported by a superbulky scorpionate ligand.
Schädle D, Maichle-Mössmer C, Schädle C, Anwander R., Chemistry 21(2), 2015
PMID: 25392940
Heterometallic complexes with cube-type [MTi3N4] cores containing Group 10 metals in a variety of oxidation states.
Martínez-Espada N, Mena M, Pérez-Redondo A, Varela-Izquierdo V, Yélamos C., Dalton Trans 44(21), 2015
PMID: 25928661
Trimethylaluminum: Bonding by Charge and Current Topology.
Stammler HG, Blomeyer S, Berger RJ, Mitzel NW., Angew Chem Int Ed Engl 54(46), 2015
PMID: 26390916
Rare-earth metal methylidene complexes with Ln3(μ3-CH2)(μ3-Me)(μ2-Me)3 core structure.
Schädle D, Meermann-Zimmermann M, Maichle-Mössmer C, Schädle C, Törnroos KW, Anwander R., Dalton Trans 44(41), 2015
PMID: 26418665
Rare-Earth-metal methylidene complexes.
Kratsch J, Roesky PW., Angew Chem Int Ed Engl 53(2), 2014
PMID: 24395606
Lutetium-methanediide-alkyl complexes: synthesis and chemistry.
Li S, Wang M, Liu B, Li L, Cheng J, Wu C, Liu D, Liu J, Cui D., Chemistry 20(47), 2014
PMID: 25284379

59 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0

Schumann, Chem. Rev. 95(), 1995
Synthesis and structural chemistry of non-cyclopentadienyl organolanthanide complexes.
Edelmann FT, Freckmann DM, Schumann H., Chem. Rev. 102(6), 2002
PMID: 12059256

Hitchcock, J. Chem. Soc. Chem. Commun. (), 1988
Homoleptic rare-earth metal complexes containing Ln-C σ-bonds.
Zimmermann M, Anwander R., Chem. Rev. 110(10), 2010
PMID: 20879714

AUTHOR UNKNOWN, 0
Cationic organometallic complexes of scandium, yttrium, and the lanthanoids.
Zeimentz PM, Arndt S, Elvidge BR, Okuda J., Chem. Rev. 106(6), 2006
PMID: 16771454

Arndt, Adv. Synth. Catal. 347(), 2005

AUTHOR UNKNOWN, 0
The first structurally characterized cationic lanthanide-alkyl complexes.
Arndt S, Spaniol TP, Okuda J., Chem. Commun. (Camb.) (8), 2002
PMID: 12123033

Arndt, Dalton Trans. (), 2003

Arndt, Angew. Chem. 117(), 2005

Arndt, Angew. Chem. 117(), 2005
Cationic yttrium methyl complexes as functional models for polymerization catalysts of 1,3-dienes.
Arndt S, Beckerle K, Zeimentz PM, Spaniol TP, Okuda J., Angew. Chem. Int. Ed. Engl. 44(45), 2005
PMID: 16247810

AUTHOR UNKNOWN, 0

Hajela, J. Organomet. Chem. 532(), 1997

Tredget, Organometallics 27(), 2008
Highly efficient ethylene polymerisation by scandium alkyls supported by neutral fac-kappa3 coordinated N3 donor ligands.
Lawrence SC, Ward BD, Dubberley SR, Kozak CM, Mountford P., Chem. Commun. (Camb.) (23), 2003
PMID: 14680221

Ward, Angew. Chem. 117(), 2005

AUTHOR UNKNOWN, 0

Dietrich, Organometallics 25(), 2006

Ziegler, J. Am. Chem. Soc. 115(), 1993

AUTHOR UNKNOWN, 0

Schumann, Angew. Chem. 90(), 1978

AUTHOR UNKNOWN, Angew. Chem. Int. Ed. Engl. 17(), 1978

Schumann, J. Organomet. Chem. 263(), 1984

Schumann, Organometallics 3(), 1984
Cationic methyl complexes of the rare-earth metals: an experimental and computational study on synthesis, structure, and reactivity.
Kramer MU, Robert D, Arndt S, Zeimentz PM, Spaniol TP, Yahia A, Maron L, Eisenstein O, Okuda J., Inorg Chem 47(20), 2008
PMID: 18816050

AUTHOR UNKNOWN, 0
Homoleptic rare-earth metal(III) tetramethylaluminates: structural chemistry, reactivity, and performance in isoprene polymerization.
Zimmermann M, Froystein NA, Fischbach A, Sirsch P, Dietrich HM, Tornroos KW, Herdtweck E, Anwander R., Chemistry 13(31), 2007
PMID: 17654457

Evans, Organometallics 14(), 1995
Neutral ligand induced methane elimination from rare-earth metal tetramethylaluminates up to the six-coordinate carbide state.
Venugopal A, Kamps I, Bojer D, Berger RJ, Mix A, Willner A, Neumann B, Stammler HG, Mitzel NW., Dalton Trans (29), 2009
PMID: 20449090

Dietrich, Angew. Chem. 117(), 2005
Trimethylyttrium and trimethyllutetium.
Dietrich HM, Raudaschl-Sieber G, Anwander R., Angew. Chem. Int. Ed. Engl. 44(33), 2005
PMID: 16038009

AUTHOR UNKNOWN, 0

Bojer, Angew. Chem. 122(), 2010
Lewis base induced reductions in organolanthanide chemistry.
Bojer D, Venugopal A, Neumann B, Stammler HG, Mitzel NW., Angew. Chem. Int. Ed. Engl. 49(14), 2010
PMID: 20191648

Meyer, Angew. Chem. 122(), 2010
Heteroleptic samarium(II) complexes by base-induced reduction.
Meyer G., Angew. Chem. Int. Ed. Engl. 49(18), 2010
PMID: 20209553
Cationic rare-earth-metal methyl complexes: a new preparative access exemplified for Y and Pr.
Nieland A, Mix A, Neumann B, Stammler HG, Mitzel NW., Dalton Trans 39(29), 2010
PMID: 20442946
Ln(III) methyl and methylidene complexes stabilized by a bulky hydrotris(pyrazolyl)borate ligand.
Zimmermann M, Takats J, Kiel G, Tornroos KW, Anwander R., Chem. Commun. (Camb.) (5), 2007
PMID: 18209806

Litlabø, Angew. Chem. 120(), 2008
A rare-earth metal variant of the Tebbe reagent.
Litlabo R, Zimmermann M, Saliu K, Takats J, Tornroos KW, Anwander R., Angew. Chem. Int. Ed. Engl. 47(49), 2008
PMID: 18972476

Arndt, Angew. Chem. 115(), 2003

Arndt, Angew. Chem. 115(), 2003

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Evans, J. Am. Chem. Soc. 112(), 1990

Sobota, Inorg. Chem. 33(), 1994

Chiu, J. Organomet. Chem. 614-615(), 2000

Immirzi, Inorg. Chim. Acta 25(), 1977

Burrow, Inorg. Chem. 34(), 1995

Martinez-Aguilera, Tetrahedron: Asymmetry 6(), 1995
A short history of SHELX.
Sheldrick GM., Acta Crystallogr., A, Found. Crystallogr. 64(Pt 1), 2007
PMID: 18156677
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21503986
PubMed | Europe PMC

Suchen in

Google Scholar