The statistical determinants of adaptation rate in human reaching

Burge J, Ernst MO, Banks MS (2008)
Journal of Vision 8(4): 20.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Burge, Johannes; Ernst, Marc O.UniBi; Banks, Martin S.
Abstract / Bemerkung
Rapid reaching to a target is generally accurate but also contains random and systematic error. Random errors result from noise in visual measurement, motor planning, and reach execution. Systematic error results from systematic changes in the mapping between the visual estimate of target location and the motor command necessary to reach the target (e. g., new spectacles, muscular fatigue). Humans maintain accurate reaching by recalibrating the visuomotor system, but no widely accepted computational model of the process exists. Given certain boundary conditions, a statistically optimal solution is a Kalman filter. We compared human to Kalman filter behavior to determine how humans take into account the statistical properties of errors and the reliability with which those errors can be measured. For most conditions, human and Kalman filter behavior was similar: Increasing measurement uncertainty caused similar decreases in recalibration rate; directionally asymmetric uncertainty caused different rates in different directions; more variation in systematic error increased recalibration rate. However, behavior differed in one respect: Inserting random error by perturbing feedback position causes slower adaptation in Kalman filters but had no effect in humans. This difference may be due to how biological systems remain responsive to changes in environmental statistics. We discuss the implications of this work.
Stichworte
combination; adaptation; reaching; recalibration; visuomotor; Kalman filter; cue
Erscheinungsjahr
2008
Zeitschriftentitel
Journal of Vision
Band
8
Ausgabe
4
Seite(n)
20
ISSN
1534-7362
Page URI
https://pub.uni-bielefeld.de/record/2287998

Zitieren

Burge J, Ernst MO, Banks MS. The statistical determinants of adaptation rate in human reaching. Journal of Vision. 2008;8(4):20.
Burge, J., Ernst, M. O., & Banks, M. S. (2008). The statistical determinants of adaptation rate in human reaching. Journal of Vision, 8(4), 20. doi:10.1167/8.4.20
Burge, J., Ernst, M. O., and Banks, M. S. (2008). The statistical determinants of adaptation rate in human reaching. Journal of Vision 8, 20.
Burge, J., Ernst, M.O., & Banks, M.S., 2008. The statistical determinants of adaptation rate in human reaching. Journal of Vision, 8(4), p 20.
J. Burge, M.O. Ernst, and M.S. Banks, “The statistical determinants of adaptation rate in human reaching”, Journal of Vision, vol. 8, 2008, pp. 20.
Burge, J., Ernst, M.O., Banks, M.S.: The statistical determinants of adaptation rate in human reaching. Journal of Vision. 8, 20 (2008).
Burge, Johannes, Ernst, Marc O., and Banks, Martin S. “The statistical determinants of adaptation rate in human reaching”. Journal of Vision 8.4 (2008): 20.

80 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Decreased Temporal Sensorimotor Adaptation Due to Perturbation-Induced Measurement Noise.
Knelange EB, López-Moliner J., Front Hum Neurosci 13(), 2019
PMID: 30837854
Goal-related feedback guides motor exploration and redundancy resolution in human motor skill acquisition.
Rohde M, Narioka K, Steil JJ, Klein LK, Ernst MO., PLoS Comput Biol 15(3), 2019
PMID: 30835770
Touch as an auxiliary proprioceptive cue for movement control.
Moscatelli A, Bianchi M, Ciotti S, Bettelani GC, Parise CV, Lacquaniti F, Bicchi A., Sci Adv 5(6), 2019
PMID: 31183406
Human online adaptation to changes in prior probability.
Norton EH, Acerbi L, Ma WJ, Landy MS., PLoS Comput Biol 15(7), 2019
PMID: 31283765
Improved Learning a Coincident Timing Task With a Predictable Resisting Force.
Forner-Cordero A, Quadrado VH, Tsagbey SA, Smits-Engelsman BCM., Motor Control 22(2), 2018
PMID: 28388269
A mass-density model can account for the size-weight illusion.
Wolf C, Bergmann Tiest WM, Drewing K., PLoS One 13(2), 2018
PMID: 29447183
Reward abundance interferes with error-based learning in a visuomotor adaptation task.
van der Kooij K, Oostwoud Wijdenes L, Rigterink T, Overvliet KE, Smeets JBJ., PLoS One 13(3), 2018
PMID: 29513681
Invariant errors reveal limitations in motor correction rather than constraints on error sensitivity.
Kim HE, Morehead JR, Parvin DE, Moazzezi R, Ivry RB., Commun Biol 1(), 2018
PMID: 30271906
Visuomotor learning is dependent on direction-specific error saliency.
Jiang W, Yuan X, Yin C, Wei K., J Neurophysiol 120(1), 2018
PMID: 29589810
Multiple motor memories are learned to control different points on a tool.
Heald JB, Ingram JN, Flanagan JR, Wolpert DM., Nat Hum Behav 2(4), 2018
PMID: 29736420
Individual Differences in Motor Noise and Adaptation Rate Are Optimally Related.
van der Vliet R, Frens MA, de Vreede L, Jonker ZD, Ribbers GM, Selles RW, van der Geest JN, Donchin O., eNeuro 5(4), 2018
PMID: 30073197
Late Bayesian inference in mental transformations.
Remington ED, Parks TV, Jazayeri M., Nat Commun 9(1), 2018
PMID: 30356049
Conventional analysis of trial-by-trial adaptation is biased: Empirical and theoretical support using a Bayesian estimator.
Blustein D, Shehata A, Englehart K, Sensinger J., PLoS Comput Biol 14(12), 2018
PMID: 30586387
EMG Versus Torque Control of Human-Machine Systems: Equalizing Control Signal Variability Does not Equalize Error or Uncertainty.
Johnson RE, Kording KP, Hargrove LJ, Sensinger JW., IEEE Trans Neural Syst Rehabil Eng 25(6), 2017
PMID: 27576255
Auditory Localisation Biases Increase with Sensory Uncertainty.
Garcia SE, Jones PR, Rubin GS, Nardini M., Sci Rep 7(), 2017
PMID: 28074913
Target Uncertainty Mediates Sensorimotor Error Correction.
Acerbi L, Vijayakumar S, Wolpert DM., PLoS One 12(1), 2017
PMID: 28129323
Explicit Action Switching Interferes with the Context-Specificity of Motor Memories in Older Adults.
Sombric CJ, Harker HM, Sparto PJ, Torres-Oviedo G., Front Aging Neurosci 9(), 2017
PMID: 28321188
Trust in haptic assistance: weighting visual and haptic cues based on error history.
Gibo TL, Mugge W, Abbink DA., Exp Brain Res 235(8), 2017
PMID: 28534068
Control of force during rapid visuomotor force-matching tasks can be described by discrete time PID control algorithms.
Dideriksen JL, Feeney DF, Almuklass AM, Enoka RM., Exp Brain Res 235(8), 2017
PMID: 28555275
Dissociating error-based and reinforcement-based loss functions during sensorimotor learning.
Cashaback JGA, McGregor HR, Mohatarem A, Gribble PL., PLoS Comput Biol 13(7), 2017
PMID: 28753634
Variance in exposed perturbations impairs retention of visuomotor adaptation.
Canaveral CA, Danion F, Berrigan F, Bernier PM., J Neurophysiol 118(5), 2017
PMID: 28814633
Rewarding imperfect motor performance reduces adaptive changes.
van der Kooij K, Overvliet KE., Exp Brain Res 234(6), 2016
PMID: 26758721
Saccadic adaptation to a systematically varying disturbance.
Cassanello CR, Ohl S, Rolfs M., J Neurophysiol 116(2), 2016
PMID: 27098027
Saccade Adaptation and Visual Uncertainty.
Souto D, Gegenfurtner KR, Schütz AC., Front Hum Neurosci 10(), 2016
PMID: 27252635
Error Correction and the Structure of Inter-Trial Fluctuations in a Redundant Movement Task.
John J, Dingwell JB, Cusumano JP., PLoS Comput Biol 12(9), 2016
PMID: 27643895
Laterality Differences in Cerebellar-Motor Cortex Connectivity.
Schlerf JE, Galea JM, Spampinato D, Celnik PA., Cereb Cortex 25(7), 2015
PMID: 24436320
Reward feedback accelerates motor learning.
Nikooyan AA, Ahmed AA., J Neurophysiol 113(2), 2015
PMID: 25355957
Behavioural and neural basis of anomalous motor learning in children with autism.
Marko MK, Crocetti D, Hulst T, Donchin O, Shadmehr R, Mostofsky SH., Brain 138(pt 3), 2015
PMID: 25609685
Prospective errors determine motor learning.
Takiyama K, Hirashima M, Nozaki D., Nat Commun 6(), 2015
PMID: 25635628
Visuomotor adaptation: how forgetting keeps us conservative.
van der Kooij K, Brenner E, van Beers RJ, Smeets JB., PLoS One 10(2), 2015
PMID: 25723763
Structure Learning in Bayesian Sensorimotor Integration.
Genewein T, Hez E, Razzaghpanah Z, Braun DA., PLoS Comput Biol 11(8), 2015
PMID: 26305797
Visuo-proprioceptive interactions during adaptation of the human reach.
Judkins T, Scheidt RA., J Neurophysiol 111(4), 2014
PMID: 24259549
Environmental consistency determines the rate of motor adaptation.
Gonzalez Castro LN, Hadjiosif AM, Hemphill MA, Smith MA., Curr Biol 24(10), 2014
PMID: 24794296
Does EMG control lead to distinct motor adaptation?
Johnson RE, Kording KP, Hargrove LJ, Sensinger JW., Front Neurosci 8(), 2014
PMID: 25324712
Individuals with cerebellar degeneration show similar adaptation deficits with large and small visuomotor errors.
Schlerf JE, Xu J, Klemfuss NM, Griffiths TL, Ivry RB., J Neurophysiol 109(4), 2013
PMID: 23197450
Sensorimotor priors in nonstationary environments.
Narain D, van Beers RJ, Smeets JB, Brenner E., J Neurophysiol 109(5), 2013
PMID: 23235999
Alignment to natural and imposed mismatches between the senses.
van der Kooij K, Brenner E, van Beers RJ, Schot WD, Smeets JB., J Neurophysiol 109(7), 2013
PMID: 23343893
The dynamics of sensorimotor calibration in reaching-to-grasp movements.
Bingham GP, Mon-Williams MA., J Neurophysiol 110(12), 2013
PMID: 24068760
Natural error patterns enable transfer of motor learning to novel contexts.
Torres-Oviedo G, Bastian AJ., J Neurophysiol 107(1), 2012
PMID: 21957223
Facilitation of learning induced by both random and gradual visuomotor task variation.
Turnham EJ, Braun DA, Wolpert DM., J Neurophysiol 107(4), 2012
PMID: 22131385
Effect of visuomotor-map uncertainty on visuomotor adaptation.
Saijo N, Gomi H., J Neurophysiol 107(6), 2012
PMID: 22190631
Measuring adaptation with a sinusoidal perturbation function.
Hudson TE, Landy MS., J Neurosci Methods 208(1), 2012
PMID: 22565135
Dynamic estimation of task-relevant variance in movement under risk.
Landy MS, Trommershäuser J, Daw ND., J Neurosci 32(37), 2012
PMID: 22972994
Saccadic gain adaptation is predicted by the statistics of natural fluctuations in oculomotor function.
Albert MV, Catz N, Thier P, Kording K., Front Comput Neurosci 6(), 2012
PMID: 23230397
Bayesian approaches to sensory integration for motor control.
Berniker M, Kording K., Wiley Interdiscip Rev Cogn Sci 2(4), 2011
PMID: 26302201
Flexible cognitive strategies during motor learning.
Taylor JA, Ivry RB., PLoS Comput Biol 7(3), 2011
PMID: 21390266
Visual-haptic cue integration with spatial and temporal disparity during pointing movements.
Serwe S, Körding KP, Trommershäuser J., Exp Brain Res 210(1), 2011
PMID: 21374079
Bayesian models: the structure of the world, uncertainty, behavior, and the brain.
Vilares I, Kording K., Ann N Y Acad Sci 1224(), 2011
PMID: 21486294
Sensory weighting and realignment: independent compensatory processes.
Block HJ, Bastian AJ., J Neurophysiol 106(1), 2011
PMID: 21490284
Modelling natural and artificial hands with synergies.
Bicchi A, Gabiccini M, Santello M., Philos Trans R Soc Lond B Biol Sci 366(1581), 2011
PMID: 21969697
A Bayesian model of perceived head-centered velocity during smooth pursuit eye movement.
Freeman TC, Champion RA, Warren PA., Curr Biol 20(8), 2010
PMID: 20399096
Visual-haptic adaptation is determined by relative reliability.
Burge J, Girshick AR, Banks MS., J Neurosci 30(22), 2010
PMID: 20519546
Responsibility assignment in redundant systems.
White O, Diedrichsen J., Curr Biol 20(14), 2010
PMID: 20598886
Learning to use an invisible visual signal for perception.
Di Luca M, Ernst MO, Backus BT., Curr Biol 20(20), 2010
PMID: 20933421
Cerebellar contributions to adaptive control of saccades in humans.
Xu-Wilson M, Chen-Harris H, Zee DS, Shadmehr R., J Neurosci 29(41), 2009
PMID: 19828807
Multisensory integration: a late bloomer.
Ernst MO., Curr Biol 18(12), 2008
PMID: 18579094

56 References

Daten bereitgestellt von Europe PubMed Central.

Adaptation to three-dimensional distortions in human vision.
Adams WJ, Banks MS, van Ee R., Nat. Neurosci. 4(11), 2001
PMID: 11584290
Constraints on learning new mappings between perceptual dimensions
Bedford FL., 1989
Perceptual learning
Bedford FL., 1993
Perceptual and cognitive spatial learning.
Bedford FL., J Exp Psychol Hum Percept Perform 19(3), 1993
PMID: 8331313
The multisensory physiological and pathological vertigo syndromes.
Brandt T, Daroff RB., Ann. Neurol. 7(3), 1980
PMID: 6999976
Vision and touch are automatically integrated for the perception of sequences of events
Bresciani JP, Dammeier F, Ernst MO., 2006
Modeling sensorimotor learning with linear dynamical systems.
Cheng S, Sabes PN., Neural Comput 18(4), 2006
PMID: 16494690
Problems arising in the analysis of a series of similar experiments
Cochran WG., 1937
Ideal observer for heading judgments.
Crowell JA, Banks MS., Vision Res. 36(3), 1996
PMID: 8746236
Proaction in the recovery from practice under visual displacement
Devane JR., 1968
Neural correlates of reach errors.
Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R., J. Neurosci. 25(43), 2005
PMID: 16251440
A Bayesian view on multimodal cue integration
Ernst MO., 2005
Sequential ideal-observer analysis of visual discriminations.
Geisler WS., Psychol Rev 96(2), 1989
PMID: 2652171
The combination of vision and touch depends on spatial proximity
Gepshtein S, Burge J, Ernst MO, Banks MS., 2005
Computational models of sensorimotor integration
Ghahramani Z, Wolpert DM, Jordan MI., 1997
The power law repealed: the case for an exponential law of practice.
Heathcote A, Brown S, Mewhort DJ., Psychon Bull Rev 7(2), 2000
PMID: 10909131
Optimal integration of shape information from vision and touch
Helbig HB, Ernst MO., 2007
Combining sensory information: mandatory fusion within, but not between, senses.
Hillis JM, Ernst MO, Banks MS, Landy MS., Science 298(5598), 2002
PMID: 12446912
Relearning sound localization with new ears.
Hofman PM, Van Riswick JG, Van Opstal AJ., Nat. Neurosci. 1(5), 1998
PMID: 10196533
Adaptation to gradual as compared with sudden visuo-motor distortions
Kagerer FA, Contreras-Vidal JL, Stelmach GE., 1997
Perceptual characterization of images degraded by blur and noise: Experiments
Kayargadde V, Martens JB., 1996
How plastic is spatial hearing?
King AJ, Kacelnik O, Mrsic-Flogel TD, Schnupp JW, Parsons CH, Moore DR., Audiol. Neurootol. 6(4), 2001
PMID: 11694724
Plasticity in the neural coding of auditory space in the mammalian brain.
King AJ, Parsons CH, Moore DR., Proc. Natl. Acad. Sci. U.S.A. 97(22), 2000
PMID: 11050215
Vision guides the adjustment of auditory localization in young barn owls.
Knudsen EI, Knudsen PF., Science 230(4725), 1985
PMID: 4048948
The dynamics of memory as a consequence of optimal adaptation to a changing body.
Kording KP, Tenenbaum JB, Shadmehr R., Nat. Neurosci. 10(6), 2007
PMID: 17496891
Bayesian integration in sensorimotor learning.
Kording KP, Wolpert DM., Nature 427(6971), 2004
PMID: 14724638
A Bayesian view of motor adaptation
Korenberg AT, Ghahramani Z., 2002
Ideal cue combination for localizing texture-defined edges
Landy MS, Kojima H., 2001
Vernier acuity, crowding and amblyopia.
Levi DM, Klein SA., Vision Res. 25(7), 1985
PMID: 4049747

Maybeck P., 1979
Optimal eye movement strategies in visual search.
Najemnik J, Geisler WS., Nature 434(7031), 2005
PMID: 15772663
Weighted linear cue combination with possibly correlated error.
Oruc I, Maloney LT, Landy MS., Vision Res. 43(23), 2003
PMID: 12972395
Resolving multisensory conflict: A strategy for balancing the costs and benefits of audio-visual integration
Roach NW, Heron J, McGraw PV., 2006
Humans use continuous feedback from the hand to control fast reaching movements
Saunders JA, Knill DC., 2003
Adaptive representation of dynamics during learning of a motor task.
Shadmehr R, Mussa-Ivaldi FA., J. Neurosci. 14(5 Pt 2), 1994
PMID: 8182467
Modulation of the rate of error-dependent learning by the statistical properties of the task
Smith M, Shadmehr R., 2004
Multisensory integration during motor planning.
Sober SJ, Sabes PN., J. Neurosci. 23(18), 2003
PMID: 12904459
Flexible strategies for sensory integration during motor planning.
Sober SJ, Sabes PN., Nat. Neurosci. 8(4), 2005
PMID: 15793578
When feeling is more important than seeing in sensorimotor adaptation.
van Beers RJ, Wolpert DM, Haggard P., Curr. Biol. 12(10), 2002
PMID: 12015120

von H., 1867
The ideal observer concept as a modelling tool
Watson AB., 1987
Visibility, luminance and vernier acuity.
Waugh SJ, Levi DM., Vision Res. 33(4), 1993
PMID: 8503199
Visibility, timing and vernier acuity.
Waugh SJ, Levi DM., Vision Res. 33(4), 1993
PMID: 8503198
The psychometric function: I. Fitting, sampling, and goodness of fit.
Wichmann FA, Hill NJ., Percept Psychophys 63(8), 2001
PMID: 11800458
The psychometric function: II. Bootstrap-based confidence intervals and sampling.
Wichmann FA, Hill NJ., Percept Psychophys 63(8), 2001
PMID: 11800459
Measuring the time course of retention
Wickens TD., 1999

Wickens TD., 2002
Plasticity in human sound localization induced by compressed spatial vision.
Zwiers MP, Van Opstal AJ, Paige GD., Nat. Neurosci. 6(2), 2003
PMID: 12524547

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 18484859
PubMed | Europe PMC

Suchen in

Google Scholar