Integration of vestibular and proprioceptive signals for spatial updating

Frissen I, Campos JL, Souman JL, Ernst MO (2011)
Experimental Brain Research 212(2): 163-176.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Frissen, I; Campos, JL; Souman, JL; Ernst, Marc O.UniBi
Abstract / Bemerkung
Spatial updating during self-motion typically involves the appropriate integration of both visual and non-visual cues, including vestibular and proprioceptive information. Here, we investigated how human observers combine these two non-visual cues during full-stride curvilinear walking. To obtain a continuous, real-time estimate of perceived position, observers were asked to continuously point toward a previously viewed target in the absence of vision. They did so while moving on a large circular treadmill under various movement conditions. Two conditions were designed to evaluate spatial updating when information was largely limited to either proprioceptive information (walking in place) or vestibular information (passive movement). A third condition evaluated updating when both sources of information were available (walking through space) and were either congruent or in conflict. During both the passive movement condition and while walking through space, the pattern of pointing behavior demonstrated evidence of accurate egocentric updating. In contrast, when walking in place, perceived self-motion was underestimated and participants always adjusted the pointer at a constant rate, irrespective of changes in the rate at which the participant moved relative to the target. The results are discussed in relation to the maximum likelihood estimation model of sensory integration. They show that when the two cues were congruent, estimates were combined, such that the variance of the adjustments was generally reduced. Results also suggest that when conflicts were introduced between the vestibular and proprioceptive cues, spatial updating was based on a weighted average of the two inputs.
Experimental Brain Research
Page URI


Frissen I, Campos JL, Souman JL, Ernst MO. Integration of vestibular and proprioceptive signals for spatial updating. Experimental Brain Research. 2011;212(2):163-176.
Frissen, I., Campos, J. L., Souman, J. L., & Ernst, M. O. (2011). Integration of vestibular and proprioceptive signals for spatial updating. Experimental Brain Research, 212(2), 163-176.
Frissen, I, Campos, JL, Souman, JL, and Ernst, Marc O. 2011. “Integration of vestibular and proprioceptive signals for spatial updating”. Experimental Brain Research 212 (2): 163-176.
Frissen, I., Campos, J. L., Souman, J. L., and Ernst, M. O. (2011). Integration of vestibular and proprioceptive signals for spatial updating. Experimental Brain Research 212, 163-176.
Frissen, I., et al., 2011. Integration of vestibular and proprioceptive signals for spatial updating. Experimental Brain Research, 212(2), p 163-176.
I. Frissen, et al., “Integration of vestibular and proprioceptive signals for spatial updating”, Experimental Brain Research, vol. 212, 2011, pp. 163-176.
Frissen, I., Campos, J.L., Souman, J.L., Ernst, M.O.: Integration of vestibular and proprioceptive signals for spatial updating. Experimental Brain Research. 212, 163-176 (2011).
Frissen, I, Campos, JL, Souman, JL, and Ernst, Marc O. “Integration of vestibular and proprioceptive signals for spatial updating”. Experimental Brain Research 212.2 (2011): 163-176.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

25 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Navigation in Real-World Environments: New Opportunities Afforded by Advances in Mobile Brain Imaging.
Park JL, Dudchenko PA, Donaldson DI., Front Hum Neurosci 12(), 2018
PMID: 30254578
Examining the Effect of Age on Visual-Vestibular Self-Motion Perception Using a Driving Paradigm.
Ramkhalawansingh R, Keshavarz B, Haycock B, Shahab S, Campos JL., Perception 46(5), 2017
PMID: 27789758
Locomotion-Related Population Cortical Ca2+ Transients in Freely Behaving Mice.
Zhang Q, Yao J, Guang Y, Liang S, Guan J, Qin H, Liao X, Jin W, Zhang J, Pan J, Jia H, Yan J, Feng Z, Li W, Chen X., Front Neural Circuits 11(), 2017
PMID: 28439229
Our sense of direction: progress, controversies and challenges.
Cullen KE, Taube JS., Nat Neurosci 20(11), 2017
PMID: 29073639
Dependence of auditory spatial updating on vestibular, proprioceptive, and efference copy signals.
Genzel D, Firzlaff U, Wiegrebe L, MacNeilage PR., J Neurophysiol 116(2), 2016
PMID: 27169504
Bayesian Alternation during Tactile Augmentation.
Goeke CM, Planera S, Finger H, König P., Front Behav Neurosci 10(), 2016
PMID: 27774057
Optimal visual-vestibular integration under conditions of conflicting intersensory motion profiles.
Butler JS, Campos JL, Bülthoff HH., Exp Brain Res 233(2), 2015
PMID: 25361642
Light touch and medio-lateral postural stability during short distance gait.
Kodesh E, Falash F, Sprecher E, Dickstein R., Neurosci Lett 584(), 2015
PMID: 25450148
Kinesthetic and vestibular information modulate alpha activity during spatial navigation: a mobile EEG study.
Ehinger BV, Fischer P, Gert AL, Kaufhold L, Weber F, Pipa G, König P., Front Hum Neurosci 8(), 2014
PMID: 24616681
Resolving the active versus passive conundrum for head direction cells.
Shinder ME, Taube JS., Neuroscience 270(), 2014
PMID: 24704515
The vestibular contribution to the head direction signal and navigation.
Yoder RM, Taube JS., Front Integr Neurosci 8(), 2014
PMID: 24795578
Rat thalamic neurons encode complex combinations of heading and movement directions and the trajectory route during translocation with sensory conflict.
Enkhjargal N, Matsumoto J, Chinzorig C, Berthoz A, Ono T, Nishijo H., Front Behav Neurosci 8(), 2014
PMID: 25100955
Disturbed vestibular-neck interaction in cerebellar disease.
Kammermeier S, Kleine JF, Eggert T, Krafczyk S, Büttner U., J Neurol 260(3), 2013
PMID: 23081756
Biases in the perception of self-motion during whole-body acceleration and deceleration.
Tremblay L, Kennedy A, Paleressompoulle D, Borel L, Mouchnino L, Blouin J., Front Integr Neurosci 7(), 2013
PMID: 24379764
Multisensory integration in the estimation of walked distances.
Campos JL, Butler JS, Bülthoff HH., Exp Brain Res 218(4), 2012
PMID: 22411581

57 References

Daten bereitgestellt von Europe PubMed Central.

A kinematic comparison of overground and treadmill walking.
Alton F, Baldey L, Caplan S, Morrissey MC., Clin Biomech (Bristol, Avon) 13(6), 1998
PMID: 11415818
Vestibular system: the many facets of a multimodal sense.
Angelaki DE, Cullen KE., Annu. Rev. Neurosci. 31(), 2008
PMID: 18338968
Multisensory integration: psychophysics, neurophysiology, and computation.
Angelaki DE, Gu Y, DeAngelis GC., Curr. Opin. Neurobiol. 19(4), 2009
PMID: 19616425

NH, Presence-Teleop Virt 8(), 1999
Fusion of vestibular and podokinesthetic information during self-turning towards instructed targets.
Becker W, Nasios G, Raab S, Jurgens R., Exp Brain Res 144(4), 2002
PMID: 12037631
Spatial memory of body linear displacement: what is being stored?
Berthoz A, Israel I, Georges-Francois P, Grasso R, Tsuzuku T., Science 269(5220), 1995
PMID: 7604286

W, 1981

W, Aggressologie 19(A), 1978
Biomechanical versus inertial information: stable individual differences in perception of self-rotation.
Bruggeman H, Piuneu VS, Rieser JJ, Pick HL Jr., J Exp Psychol Hum Percept Perform 35(5), 2009
PMID: 19803650

HH, 1996


Imagined self-motion differs from perceived self-motion: evidence from a novel continuous pointing method.
Campos JL, Siegle JH, Mohler BJ, Bulthoff HH, Loomis JM., PLoS ONE 4(11), 2009
PMID: 19907655
The brain weights body-based cues higher than vision when estimating walked distances.
Campos JL, Byrne P, Sun HJ., Eur. J. Neurosci. 31(10), 2010
PMID: 20584194
Bayesian integration of spatial information.
Cheng K, Shettleworth SJ, Huttenlocher J, Rieser JJ., Psychol Bull 133(4), 2007
PMID: 17592958
The precision of locomotor odometry in humans.
Durgin FH, Akagi M, Gallistel CR, Haiken W., Exp Brain Res 193(3), 2008
PMID: 19030852
Merging the senses into a robust percept.
Ernst MO, Bulthoff HH., Trends Cogn. Sci. (Regul. Ed.) 8(4), 2004
PMID: 15050512
Dynamic reweighting of visual and vestibular cues during self-motion perception.
Fetsch CR, Turner AH, DeAngelis GC, Angelaki DE., J. Neurosci. 29(49), 2009
PMID: 20007484
Visual perception of egocentric distance as assessed by triangulation.
Fukusima SS, Loomis JM, Da Silva JA., J Exp Psychol Hum Percept Perform 23(1), 1997
PMID: 9090148

Goal-directed linear locomotion in normal and labyrinthine-defective subjects.
Glasauer S, Amorim MA, Vitte E, Berthoz A., Exp Brain Res 98(2), 1994
PMID: 8050517
Visual and non-visual cues in the perception of linear self-motion.
Harris LR, Jenkin M, Zikovitz DC., Exp Brain Res 135(1), 2000
PMID: 11104123
Contribution of the otoliths to the calculation of linear displacement.
Israel I, Berthoz A., J. Neurophysiol. 62(1), 1989
PMID: 2754476
Spatial memory and path integration studied by self-driven passive linear displacement. I. Basic properties.
Israel I, Grasso R, Georges-Francois P, Tsuzuku T, Berthoz A., J. Neurophysiol. 77(6), 1997
PMID: 9212267
Optimal integration of texture and motion cues to depth.
Jacobs RA., Vision Res. 39(21), 1999
PMID: 10746132
Bayesian integration in sensorimotor learning.
Kording KP, Wolpert DM., Nature 427(6971), 2004
PMID: 14724638
Evidence for motor simulation in imagined locomotion.
Kunz BR, Creem-Regehr SH, Thompson WB., J Exp Psychol Hum Percept Perform 35(5), 2009
PMID: 19803649
Vestibular, proprioceptive, and haptic contributions to spatial orientation.
Lackner JR, DiZio P, Lackner JR., Annu Rev Psychol 56(), 2005
PMID: 15709931

JM, 2008
Visual space perception and visually directed action.
Loomis JM, Da Silva JA, Fujita N, Fukusima SS., J Exp Psychol Hum Percept Perform 18(4), 1992
PMID: 1431754
A Bayesian model of the disambiguation of gravitoinertial force by visual cues.
MacNeilage PR, Banks MS, Berger DR, Bulthoff HH., Exp Brain Res 179(2), 2006
PMID: 17136526
Idiothetic navigation in humans: estimation of path length.
Mittelstaedt ML, Mittelstaedt H., Exp Brain Res 139(3), 2001
PMID: 11545471
Development of cue integration in human navigation.
Nardini M, Jones P, Bedford R, Braddick O., Curr. Biol. 18(9), 2008
PMID: 18450447
Visual perception and the guidance of locomotion without vision to previously seen targets.
Rieser JJ, Ashmead DH, Talor CR, Youngquist GA., Perception 19(5), 1990
PMID: 2103000
Calibration of human locomotion and models of perceptual-motor organization.
Rieser JJ, Pick HL Jr, Ashmead DH, Garing AE., J Exp Psychol Hum Percept Perform 21(3), 1995
PMID: 7790829
A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects.
Riley PO, Paolini G, Della Croce U, Paylo KW, Kerrigan DC., Gait Posture 26(1), 2006
PMID: 16905322
Measurement of instantaneous perceived self-motion using continuous pointing.
Siegle JH, Campos JL, Mohler BJ, Loomis JM, Bulthoff HH., Exp Brain Res 195(3), 2009
PMID: 19396591
Walking straight into circles.
Souman JL, Frissen I, Sreenivasa MN, Ernst MO., Curr. Biol. 19(18), 2009
PMID: 19699093
Multisensory integration in speed estimation during self-motion.
Sun HJ, Lee AJ, Campos JL, Chan GS, Zhang DH., Cyberpsychol Behav 6(5), 2003
PMID: 14583126
Multisensory integration in the estimation of relative path length.
Sun HJ, Campos JL, Chan GS., Exp Brain Res 154(2), 2003
PMID: 14685814
The contributions of static visual cues, nonvisual cues, and optic flow in distance estimation.
Sun HJ, Campos JL, Young M, Chan GS, Ellard CG., Perception 33(1), 2004
PMID: 15035328
Is continuous visual monitoring necessary in visually guided locomotion?
Thomson JA., J Exp Psychol Hum Percept Perform 9(3), 1983
PMID: 6223981

E, Naturwissenschaften 37(), 1950

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 21590262
PubMed | Europe PMC

Suchen in

Google Scholar