Schwann Cells can be reprogrammed to multipotency by culture.

Widera D, Heimann P, Zander C, Imielski Y, Heidbreder M, Heilemann M, Kaltschmidt C, Kaltschmidt B (2011)
STEM CELLS AND Development 20(12): 2053-2064.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Adult neural crest related-stem cells persist in adulthood, making them an ideal and easily accessible source of multipotent cells for potential clinical use. Recently, we reported the presence of neural crest-related stem cells within adult palatal ridges, thus raising the question of their localization in their endogenous niche. Using immunocytochemistry, reverse transcription-polymerase chain reaction, and correlative fluorescence and transmission electron microscopy, we identified myelinating Schwann cells within palatal ridges as a putative neural crest stem cell source. Palatal Schwann cells expressed nestin, p75(NTR), and S100. Correlative fluorescence and transmission electron microscopy revealed the exclusive nestin expression within myelinating Schwann cells. Palatal neural crest stem cells and nestin-positive Schwann cells isolated from adult sciatic nerves were able to grow under serum-free conditions as neurospheres in presence of FGF-2 and EGF. Spheres of palatal and sciatic origin showed overlapping expression pattern of neural crest stem cell and Schwann cell markers. Expression of the pluripotency factors Sox2, Klf4, c-Myc, Oct4, the NF-κB subunits p65, p50, and the NF-κB-inhibitor IκB-β were up-regulated in conventionally cultivated sciatic nerve Schwann cells and in neurosphere cultures. Finally, neurospheres of palatal and sciatic origin were able to differentiate into ectodermal, mesodermal, and endodermal cell types emphasizing their multipotency. Taken together, we show that nestin-positive myelinating Schwann cells can be reprogrammed into multipotent adult neural crest stem cells under appropriate culture conditions.
STEM CELLS AND Development
Page URI


Widera D, Heimann P, Zander C, et al. Schwann Cells can be reprogrammed to multipotency by culture. STEM CELLS AND Development. 2011;20(12):2053-2064.
Widera, D., Heimann, P., Zander, C., Imielski, Y., Heidbreder, M., Heilemann, M., Kaltschmidt, C., et al. (2011). Schwann Cells can be reprogrammed to multipotency by culture. STEM CELLS AND Development, 20(12), 2053-2064.
Widera, Darius, Heimann, Peter, Zander, Christin, Imielski, Yvonne, Heidbreder, Meike, Heilemann, Mike, Kaltschmidt, Christian, and Kaltschmidt, Barbara. 2011. “Schwann Cells can be reprogrammed to multipotency by culture.”. STEM CELLS AND Development 20 (12): 2053-2064.
Widera, D., Heimann, P., Zander, C., Imielski, Y., Heidbreder, M., Heilemann, M., Kaltschmidt, C., and Kaltschmidt, B. (2011). Schwann Cells can be reprogrammed to multipotency by culture. STEM CELLS AND Development 20, 2053-2064.
Widera, D., et al., 2011. Schwann Cells can be reprogrammed to multipotency by culture. STEM CELLS AND Development, 20(12), p 2053-2064.
D. Widera, et al., “Schwann Cells can be reprogrammed to multipotency by culture.”, STEM CELLS AND Development, vol. 20, 2011, pp. 2053-2064.
Widera, D., Heimann, P., Zander, C., Imielski, Y., Heidbreder, M., Heilemann, M., Kaltschmidt, C., Kaltschmidt, B.: Schwann Cells can be reprogrammed to multipotency by culture. STEM CELLS AND Development. 20, 2053-2064 (2011).
Widera, Darius, Heimann, Peter, Zander, Christin, Imielski, Yvonne, Heidbreder, Meike, Heilemann, Mike, Kaltschmidt, Christian, and Kaltschmidt, Barbara. “Schwann Cells can be reprogrammed to multipotency by culture.”. STEM CELLS AND Development 20.12 (2011): 2053-2064.

31 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Schwann cell precursors in health and disease.
Aquino JB, Sierra R., Glia 66(3), 2018
PMID: 29124786
The regulation of the homeostasis and regeneration of peripheral nerve is distinct from the CNS and independent of a stem cell population.
Stierli S, Napoli I, White IJ, Cattin AL, Monteza Cabrejos A, Garcia Calavia N, Malong L, Ribeiro S, Nihouarn J, Williams R, Young KM, Richardson WD, Lloyd AC., Development 145(24), 2018
PMID: 30413560
Uncovering the In Vivo Source of Adult Neural Crest Stem Cells.
Aquino JB., Stem Cells Dev 26(5), 2017
PMID: 27923324
Intracranial neuromuscular choristoma: Report of a case with literature review.
Coli A, Novello M, Tamburrini G, Antonelli M, Giangaspero F, Lauriola L., Neuropathology 37(4), 2017
PMID: 28168739
Purification and Characterization of Schwann Cells from Adult Human Skin and Nerve.
Stratton JA, Kumar R, Sinha S, Shah P, Stykel M, Shapira Y, Midha R, Biernaskie J., eNeuro 4(3), 2017
PMID: 28512649
S100β-Positive Cells of Mesenchymal Origin Reside in the Anterior Lobe of the Embryonic Pituitary Gland.
Horiguchi K, Yako H, Yoshida S, Fujiwara K, Tsukada T, Kanno N, Ueharu H, Nishihara H, Kato T, Yashiro T, Kato Y., PLoS One 11(10), 2016
PMID: 27695124
The origin and role of autophagy in the formation of cytoplasmic granules in canine lingual granular cell tumors.
Suzuki S, Uchida K, Harada T, Nibe K, Yamashita M, Ono K, Nakayama H., Vet Pathol 52(3), 2015
PMID: 25161210
Morphologic and immunohistochemical features of malignant peripheral nerve sheath tumors and cellular schwannomas.
Pekmezci M, Reuss DE, Hirbe AC, Dahiya S, Gutmann DH, von Deimling A, Horvai AE, Perry A., Mod Pathol 28(2), 2015
PMID: 25189642
Alternative generation of CNS neural stem cells and PNS derivatives from neural crest-derived peripheral stem cells.
Weber M, Apostolova G, Widera D, Mittelbronn M, Dechant G, Kaltschmidt B, Rohrer H., Stem Cells 33(2), 2015
PMID: 25331182
Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve.
Lang H, Xing Y, Brown LN, Samuvel DJ, Panganiban CH, Havens LT, Balasubramanian S, Wegner M, Krug EL, Barth JL., Sci Rep 5(), 2015
PMID: 26307538
Culture bag systems for clinical applications of adult human neural crest-derived stem cells.
Greiner JF, Grunwald LM, Müller J, Sudhoff H, Widera D, Kaltschmidt C, Kaltschmidt B., Stem Cell Res Ther 5(2), 2014
PMID: 24629140
Dopaminergic-like neurons derived from oral mucosa stem cells by developmental cues improve symptoms in the hemi-parkinsonian rat model.
Ganz J, Arie I, Buch S, Zur TB, Barhum Y, Pour S, Araidy S, Pitaru S, Offen D., PLoS One 9(6), 2014
PMID: 24945922
The stemness of neural crest cells and their derivatives.
Kunisada T, Tezulka K, Aoki H, Motohashi T., Birth Defects Res C Embryo Today 102(3), 2014
PMID: 25219876
The neural crest, a multifaceted structure of the vertebrates.
Dupin E, Le Douarin NM., Birth Defects Res C Embryo Today 102(3), 2014
PMID: 25219958
Tissue interactions in neural crest cell development and disease.
Takahashi Y, Sipp D, Enomoto H., Science 341(6148), 2013
PMID: 23970693
Adipose stromal cells contain phenotypically distinct adipogenic progenitors derived from neural crest.
Sowa Y, Imura T, Numajiri T, Takeda K, Mabuchi Y, Matsuzaki Y, Nishino K., PLoS One 8(12), 2013
PMID: 24391913
The MMP-9/TIMP-1 axis controls the status of differentiation and function of myelin-forming Schwann cells in nerve regeneration.
Kim Y, Remacle AG, Chernov AV, Liu H, Shubayev I, Lai C, Dolkas J, Shiryaev SA, Golubkov VS, Mizisin AP, Strongin AY, Shubayev VI., PLoS One 7(3), 2012
PMID: 22438979
Neural crest and olfactory system: new prospective.
Forni PE, Wray S., Mol Neurobiol 46(2), 2012
PMID: 22773137
Autonomic neurocristopathy-associated mutations in PHOX2B dysregulate Sox10 expression.
Nagashimada M, Ohta H, Li C, Nakao K, Uesaka T, Brunet JF, Amiel J, Trochet D, Wakayama T, Enomoto H., J Clin Invest 122(9), 2012
PMID: 22922260
Adult craniofacial stem cells: sources and relation to the neural crest.
Kaltschmidt B, Kaltschmidt C, Widera D., Stem Cell Rev Rep 8(3), 2012
PMID: 22170630
Sustained bFGF-release tubes for peripheral nerve regeneration: comparison with autograft.
Takagi T, Kimura Y, Shibata S, Saito H, Ishii K, Okano HJ, Toyama Y, Okano H, Tabata Y, Nakamura M., Plast Reconstr Surg 130(4), 2012
PMID: 23018697
Origin and regenerative potential of vertebrate mechanoreceptor-associated stem cells.
Widera D, Hauser S, Kaltschmidt C, Kaltschmidt B., Anat Res Int 2012(), 2012
PMID: 23082250
Generation of Schwann cell-derived multipotent neurospheres isolated from intact sciatic nerve.
Martin I, Nguyen TD, Krell V, Greiner JF, Müller J, Hauser S, Heimann P, Widera D., Stem Cell Rev Rep 8(4), 2012
PMID: 22664741
Schwann-spheres derived from injured peripheral nerves in adult mice--their in vitro characterization and therapeutic potential.
Takagi T, Ishii K, Shibata S, Yasuda A, Sato M, Nagoshi N, Saito H, Okano HJ, Toyama Y, Okano H, Nakamura M., PLoS One 6(6), 2011
PMID: 21720551

40 References

Daten bereitgestellt von Europe PubMed Central.

Neural crest stem cells.
Teng L, Labosky PA., Adv. Exp. Med. Biol. 589(), 2006
PMID: 17076284
The glial nature of embryonic and adult neural stem cells.
Kriegstein A, Alvarez-Buylla A., Annu. Rev. Neurosci. 32(), 2009
PMID: 19555289
Adult palatum as a novel source of neural crest-related stem cells.
Widera D, Zander C, Heidbreder M, Kasperek Y, Noll T, Seitz O, Saldamli B, Sudhoff H, Sader R, Kaltschmidt C, Kaltschmidt B., Stem Cells 27(8), 2009
PMID: 19544446
Reversal of developmental restrictions in neural crest lineages: transition from Schwann cells to glial-melanocytic precursors in vitro.
Dupin E, Real C, Glavieux-Pardanaud C, Vaigot P, Le Douarin NM., Proc. Natl. Acad. Sci. U.S.A. 100(9), 2003
PMID: 12702775
The instability of the neural crest phenotypes: Schwann cells can differentiate into myofibroblasts.
Real C, Glavieux-Pardanaud C, Vaigot P, Le-Douarin N, Dupin E., Int. J. Dev. Biol. 49(2-3), 2005
PMID: 15906228
Nuclear reprogramming to a pluripotent state by three approaches.
Yamanaka S, Blau HM., Nature 465(7299), 2010
PMID: 20535199
Isolation and functional characterization of Schwann cells derived from adult peripheral nerve.
Morrissey TK, Kleitman N, Bunge RP., J. Neurosci. 11(8), 1991
PMID: 1869923
Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells.
Joannides A, Gaughwin P, Schwiening C, Majed H, Sterling J, Compston A, Chandran S., Lancet 364(9429), 2004
PMID: 15246730
A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin.
Hunt DP, Morris PN, Sterling J, Anderson JA, Joannides A, Jahoda C, Compston A, Chandran S., Stem Cells 26(1), 2007
PMID: 17901404
Identification of nonepithelial multipotent cells in the embryonic olfactory mucosa.
Tome M, Lindsay SL, Riddell JS, Barnett SC., Stem Cells 27(9), 2009
PMID: 19544421
Neurofilament mRNAs are present and translated in the normal and severed sciatic nerve.
Sotelo-Silveira JR, Calliari A, Kun A, Benech JC, Sanguinetti C, Chalar C, Sotelo JR., J. Neurosci. Res. 62(1), 2000
PMID: 11002288
Transient expression of the neurofilament proteins NF-L and NF-M by Schwann cells is regulated by axonal contact.
Fabrizi C, Kelly BM, Gillespie CS, Schlaepfer WW, Scherer SS, Brophy PJ., J. Neurosci. Res. 50(2), 1997
PMID: 9373038
CNS stem cells express a new class of intermediate filament protein.
Lendahl U, Zimmerman LB, McKay RD., Cell 60(4), 1990
PMID: 1689217
Monoclonal antibody rat 401 recognizes Schwann cells in mature and developing peripheral nerve.
Friedman B, Zaremba S, Hockfield S., J. Comp. Neurol. 295(1), 1990
PMID: 2341635
Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells.
Joseph NM, Mukouyama YS, Mosher JT, Jaegle M, Crone SA, Dormand EL, Lee KF, Meijer D, Anderson DJ, Morrison SJ., Development 131(22), 2004
PMID: 15496445
Neural crest-derived stem cells
Sommer L., 2010
Isolation of a novel population of multipotent adult stem cells from human hair follicles.
Yu H, Fang D, Kumar SM, Li L, Nguyen TK, Acs G, Herlyn M, Xu X., Am. J. Pathol. 168(6), 2006
PMID: 16723703
Epidermal neural crest stem cells (EPI-NCSC) and pluripotency.
Sieber-Blum M, Hu Y., Stem Cell Rev 4(4), 2008
PMID: 18712509
The lamina propria of adult human oral mucosa harbors a novel stem cell population.
Marynka-Kalmani K, Treves S, Yafee M, Rachima H, Gafni Y, Cohen MA, Pitaru S., Stem Cells 28(5), 2010
PMID: 20474080
Selective activation of NF-kappa B by nerve growth factor through the neurotrophin receptor p75.
Carter BD, Kaltschmidt C, Kaltschmidt B, Offenhauser N, Bohm-Matthaei R, Baeuerle PA, Barde YA., Science 272(5261), 1996
PMID: 8614802
Subventricular zone astrocytes are neural stem cells in the adult mammalian brain.
Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A., Cell 97(6), 1999
PMID: 10380923
Re-entry into the cell cycle is required for bFGF-induced oligodendroglial dedifferentiation and survival.
Grinspan JB, Reeves MF, Coulaloglou MJ, Nathanson D, Pleasure D., J. Neurosci. Res. 46(4), 1996
PMID: 8950705
Transforming growth factor alpha promotes sequential conversion of mature astrocytes into neural progenitors and stem cells.
Sharif A, Legendre P, Prevot V, Allet C, Romao L, Studler JM, Chneiweiss H, Junier MP., Oncogene 26(19), 2006
PMID: 17057735
Insulin and fibroblast growth factor 2 activate a neurogenic program in Muller glia of the chicken retina.
Fischer AJ, McGuire CR, Dierks BD, Reh TA., J. Neurosci. 22(21), 2002
PMID: 12417664
Production of neurospheres from mammalian Muller cells in culture.
Monnin J, Morand-Villeneuve N, Michel G, Hicks D, Versaux-Botteri C., Neurosci. Lett. 421(1), 2007
PMID: 17548159
Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia.
Berninger B, Costa MR, Koch U, Schroeder T, Sutor B, Grothe B, Gotz M., J. Neurosci. 27(32), 2007
PMID: 17687043
Directing astroglia from the cerebral cortex into subtype specific functional neurons.
Heinrich C, Blum R, Gascon S, Masserdotti G, Tripathi P, Sanchez R, Tiedt S, Schroeder T, Gotz M, Berninger B., PLoS Biol. 8(5), 2010
PMID: 20502524
Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos.
Le Lievre CS, Le Douarin NM., J Embryol Exp Morphol 34(1), 1975
PMID: 1185098
Oct4-induced pluripotency in adult neural stem cells.
Kim JB, Sebastiano V, Wu G, Arauzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D, Meyer J, Hubner K, Bernemann C, Ortmeier C, Zenke M, Fleischmann BK, Zaehres H, Scholer HR., Cell 136(3), 2009
PMID: 19203577
Sphere formation of ocular epithelial cells in the ciliary body is a reprogramming system for neural differentiation.
Kohno R, Ikeda Y, Yonemitsu Y, Hisatomi T, Yamaguchi M, Miyazaki M, Takeshita H, Ishibashi T, Sueishi K., Brain Res. 1093(1), 2006
PMID: 16697356
Tumors of peripheral nerve origin: benign and malignant solitary schwannomas.
Das Gupta TK, Brasfield RD., CA Cancer J Clin 20(4), 1970
PMID: 4316984
Benign solitary Schwannomas (neurilemomas).
Das Gupta TK, Brasfield RD, Strong EW, Hajdu SI., Cancer 24(2), 1969
PMID: 5796779
Material in PUB:
Teil dieser Dissertation
A role of NF-κB in neural stem cells and neurons
Zander C (2011)
Bielefeld: Universität Bielefeld.

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 21466279
PubMed | Europe PMC

Suchen in

Google Scholar