Impact of visual motion adaptation on neural responses to objects and its dependence on the temporal characteristics of optic flow

Liang P, Kern R, Kurtz R, Egelhaaf M (2011)
Journal of Neurophysiology 105(4): 1825-1834.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
It is still unclear how sensory systems efficiently encode signals with statistics as experienced by animals in the real world and what role adaptation plays during normal behavior. Therefore, we studied the performance of visual motion-sensitive neurons of blowflies, the horizontal system neurons, with optic flow that was reconstructed from the head trajectories of semi-free-flying flies. To test how motion adaptation is affected by optic flow dynamics, we manipulated the seminatural optic flow by targeted modifications of the flight trajectories and assessed to what extent neuronal responses to an object located close to the flight trajectory depend on adaptation dynamics. For all types of adapting optic flow object-induced response increments were stronger in the adapted compared with the nonadapted state. Adaptation with optic flow characterized by the typical alternation between translational and rotational segments produced this effect but also adaptation with optic flow that lacked these distinguishing features and even pure rotation at a constant angular velocity. The enhancement of object-induced response increments had a direction-selective component because preferred-direction rotation and natural optic flow were more efficient adaptors than null-direction rotation. These results indicate that natural dynamics of optic flow is not a basic requirement to adapt neurons in a specific, presumably functionally beneficial way. Our findings are discussed in the light of adaptation mechanisms proposed on the basis of experiments previously done with conventional experimenter-defined stimuli.
Erscheinungsjahr
2011
Zeitschriftentitel
Journal of Neurophysiology
Band
105
Ausgabe
4
Seite(n)
1825-1834
ISSN
0022-3077
eISSN
1522-1598
Page URI
https://pub.uni-bielefeld.de/record/2095243

Zitieren

Liang P, Kern R, Kurtz R, Egelhaaf M. Impact of visual motion adaptation on neural responses to objects and its dependence on the temporal characteristics of optic flow. Journal of Neurophysiology. 2011;105(4):1825-1834.
Liang, P., Kern, R., Kurtz, R., & Egelhaaf, M. (2011). Impact of visual motion adaptation on neural responses to objects and its dependence on the temporal characteristics of optic flow. Journal of Neurophysiology, 105(4), 1825-1834. https://doi.org/10.1152/jn.00359.2010
Liang, Pei, Kern, Roland, Kurtz, Rafael, and Egelhaaf, Martin. 2011. “Impact of visual motion adaptation on neural responses to objects and its dependence on the temporal characteristics of optic flow”. Journal of Neurophysiology 105 (4): 1825-1834.
Liang, P., Kern, R., Kurtz, R., and Egelhaaf, M. (2011). Impact of visual motion adaptation on neural responses to objects and its dependence on the temporal characteristics of optic flow. Journal of Neurophysiology 105, 1825-1834.
Liang, P., et al., 2011. Impact of visual motion adaptation on neural responses to objects and its dependence on the temporal characteristics of optic flow. Journal of Neurophysiology, 105(4), p 1825-1834.
P. Liang, et al., “Impact of visual motion adaptation on neural responses to objects and its dependence on the temporal characteristics of optic flow”, Journal of Neurophysiology, vol. 105, 2011, pp. 1825-1834.
Liang, P., Kern, R., Kurtz, R., Egelhaaf, M.: Impact of visual motion adaptation on neural responses to objects and its dependence on the temporal characteristics of optic flow. Journal of Neurophysiology. 105, 1825-1834 (2011).
Liang, Pei, Kern, Roland, Kurtz, Rafael, and Egelhaaf, Martin. “Impact of visual motion adaptation on neural responses to objects and its dependence on the temporal characteristics of optic flow”. Journal of Neurophysiology 105.4 (2011): 1825-1834.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:31Z
MD5 Prüfsumme
1b43b6f2b4451e875090f94da4b8c9f8


10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Local motion adaptation enhances the representation of spatial structure at EMD arrays.
Li J, Lindemann JP, Egelhaaf M., PLoS Comput Biol 13(12), 2017
PMID: 29281631
Enhancement of prominent texture cues in fly optic flow processing.
Kurtz R., Front Neural Circuits 6(), 2012
PMID: 23112763
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913

62 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0

Barlow, 1961
Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths.
Boeddeker N, Lindemann JP, Egelhaaf M, Zeil J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191(12), 2005
PMID: 16133502

AUTHOR UNKNOWN, 0
Neural networks in the cockpit of the fly.
Borst A, Haag J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(6), 2002
PMID: 12122462
Adaptation of response transients in fly motion vision. II: Model studies.
Borst A, Reisenman C, Haag J., Vision Res. 43(11), 2003
PMID: 12726836
Identifying prototypical components in behaviour using clustering algorithms.
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
Adaptive rescaling maximizes information transmission.
Brenner N, Bialek W, de Ruyter van Steveninck R., Neuron 26(3), 2000
PMID: 10896164
A tonic hyperpolarization underlying contrast adaptation in cat visual cortex.
Carandini M, Ferster D., Science 276(5314), 1997
PMID: 9139658
Fundamental mechanisms of visual motion detection: models, cells and functions.
Clifford CW, Ibbotson MR., Prog. Neurobiol. 68(6), 2002
PMID: 12576294

AUTHOR UNKNOWN, 0
Dynamics of neuronal sensitivity in visual cortex and local feature discrimination.
Dragoi V, Sharma J, Miller EK, Sur M., Nat. Neurosci. 5(9), 2002
PMID: 12161755

AUTHOR UNKNOWN, 0

Egelhaaf, 2006

AUTHOR UNKNOWN, 0
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Adaptation in vertebrate photoreceptors.
Fain GL, Matthews HR, Cornwall MC, Koutalos Y., Physiol. Rev. 81(1), 2001
PMID: 11152756
Efficiency and ambiguity in an adaptive neural code.
Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR., Nature 412(6849), 2001
PMID: 11518957
Fly flight: a model for the neural control of complex behavior.
Frye MA, Dickinson MH., Neuron 32(3), 2001
PMID: 11709150
What's that sound? Auditory area CLM encodes stimulus surprise, not intensity or intensity changes.
Gill P, Woolley SM, Fremouw T, Theunissen FE., J. Neurophysiol. 99(6), 2008
PMID: 18287545
Adaptation and the temporal delay filter of fly motion detectors.
Harris RA, O'Carroll DC, Laughlin SB., Vision Res. 39(16), 1999
PMID: 10492824
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Influence of adapting speed on speed and contrast coding in the primary visual cortex of the cat.
Hietanen MA, Crowder NA, Price NS, Ibbotson MR., J. Physiol. (Lond.) 584(Pt 2), 2007
PMID: 17702823
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977

AUTHOR UNKNOWN, 0
The many facets of adaptation in fly visual motion processing.
Kurtz R., Commun Integr Biol 2(1), 2009
PMID: 19704857
Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons.
Kurtz R, Beckers U, Hundsdorfer B, Egelhaaf M., Eur. J. Neurosci. 30(4), 2009
PMID: 19674090

AUTHOR UNKNOWN, 0
Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes.
Kurtz R, Egelhaaf M, Meyer HG, Kern R., Proc. Biol. Sci. 276(1673), 2009
PMID: 19656791

AUTHOR UNKNOWN, 0
The representation of stimulus familiarity in anterior inferior temporal cortex.
Li L, Miller EK, Desimone R., J. Neurophysiol. 69(6), 1993
PMID: 8350131
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604

AUTHOR UNKNOWN, 0
Sexual dimorphism in the hoverfly motion vision pathway.
Nordstrom K, Barnett PD, Moyer de Miguel IM, Brinkworth RS, O'Carroll DC., Curr. Biol. 18(9), 2008
PMID: 18450449
Stimulus-specific adaptations in the gaze control system of the barn owl.
Reches A, Gutfreund Y., J. Neurosci. 28(6), 2008
PMID: 18256273
Adaptation of response transients in fly motion vision. I: Experiments.
Reisenman C, Haag J, Borst A., Vision Res. 43(11), 2003
PMID: 12726835
The challenges natural images pose for visual adaptation.
Rieke F, Rudd ME., Neuron 64(5), 2009
PMID: 20005818
Neuronal adaptation improves the recognition of temporal patterns in a grasshopper.
Ronacher B, Hennig RM., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 190(4), 2004
PMID: 14767599
Adaptation and information transmission in fly motion detection.
Safran MN, Flanagin VL, Borst A, Sompolinsky H., J. Neurophysiol. 98(6), 2007
PMID: 17928564
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Dendritic integration and its role in computing image velocity.
Single S, Borst A., Science 281(5384), 1998
PMID: 9743497
Adaptation of retinal processing to image contrast and spatial scale.
Smirnakis SM, Berry MJ, Warland DK, Bialek W, Meister M., Nature 386(6620), 1997
PMID: 9052781

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Processing of low-probability sounds by cortical neurons.
Ulanovsky N, Las L, Nelken I., Nat. Neurosci. 6(4), 2003
PMID: 12652303
Function and coding in the blowfly H1 neuron during naturalistic optic flow.
van Hateren JH, Kern R, Schwerdtfeger G, Egelhaaf M., J. Neurosci. 25(17), 2005
PMID: 15858060

van, J Exp Biol 202(), 1999
Timescales of inference in visual adaptation.
Wark B, Fairhall A, Rieke F., Neuron 61(5), 2009
PMID: 19285471
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21307322
PubMed | Europe PMC

Suchen in

Google Scholar