Ultra-slow water diffusion in aqueous sucrose glasses

Zobrist B, Soonsin V, Luo BP, Krieger UK, Marcolli C, Peter T, Koop T (2011)
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 13(8): 3514-3526.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Zobrist, Bernhard; Soonsin, Vacharaporn; Luo, Bei P.; Krieger, Ulrich K.; Marcolli, Claudia; Peter, Thomas; Koop, ThomasUniBi
Abstract / Bemerkung
We present measurements of water uptake and release by single micrometre-sized aqueous sucrose particles. The experiments were performed in an electrodynamic balance where the particles can be stored contact-free in a temperature and humidity controlled chamber for several days. Aqueous sucrose particles react to a change in ambient humidity by absorbing/desorbing water from the gas phase. This water absorption (desorption) results in an increasing (decreasing) droplet size and a decreasing (increasing) solute concentration. Optical techniques were employed to follow minute changes of the droplet's size, with a sensitivity of 0.2 nm, as a result of changes in temperature or humidity. We exposed several particles either to humidity cycles (between similar to 2% and 90%) at 291 K or to constant relative humidity and temperature conditions over long periods of time (up to several days) at temperatures ranging from 203 to 291 K. In doing so, a retarded water uptake and release at low relative humidities and/or low temperatures was observed. Under the conditions studied here, the kinetics of this water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules. Hence, it is possible to derive the translational diffusion coefficient of water molecules, D-H2O, from these data by simulating the growth or shrinkage of a particle with a liquid-phase diffusion model. Values for D-H2O-values as low as 10(-24) m(2)s(-1) are determined using data at temperatures down to 203 K deep in the glassy state. From the experiment and modelling we can infer strong concentration gradients within a single particle including a glassy skin in the outer shells of the particle. Such glassy skins practically isolate the liquid core of a particle from the surrounding gas phase, resulting in extremely long equilibration times for such particles, caused by the strongly non-linear relationship between concentration and DH2O. We present a new parameterization of DH2O that facilitates describing the stability of aqueous food and pharmaceutical formulations in the glassy state, the processing of amorphous aerosol particles in spray-drying technology, and the suppression of heterogeneous chemical reactions in glassy atmospheric aerosol particles.
Erscheinungsjahr
2011
Zeitschriftentitel
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Band
13
Ausgabe
8
Seite(n)
3514-3526
ISSN
1463-9076
eISSN
1463-9084
Page URI
https://pub.uni-bielefeld.de/record/2094407

Zitieren

Zobrist B, Soonsin V, Luo BP, et al. Ultra-slow water diffusion in aqueous sucrose glasses. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 2011;13(8):3514-3526.
Zobrist, B., Soonsin, V., Luo, B. P., Krieger, U. K., Marcolli, C., Peter, T., & Koop, T. (2011). Ultra-slow water diffusion in aqueous sucrose glasses. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 13(8), 3514-3526. https://doi.org/10.1039/c0cp01273d
Zobrist, B., Soonsin, V., Luo, B. P., Krieger, U. K., Marcolli, C., Peter, T., and Koop, T. (2011). Ultra-slow water diffusion in aqueous sucrose glasses. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 13, 3514-3526.
Zobrist, B., et al., 2011. Ultra-slow water diffusion in aqueous sucrose glasses. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 13(8), p 3514-3526.
B. Zobrist, et al., “Ultra-slow water diffusion in aqueous sucrose glasses”, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 13, 2011, pp. 3514-3526.
Zobrist, B., Soonsin, V., Luo, B.P., Krieger, U.K., Marcolli, C., Peter, T., Koop, T.: Ultra-slow water diffusion in aqueous sucrose glasses. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 13, 3514-3526 (2011).
Zobrist, Bernhard, Soonsin, Vacharaporn, Luo, Bei P., Krieger, Ulrich K., Marcolli, Claudia, Peter, Thomas, and Koop, Thomas. “Ultra-slow water diffusion in aqueous sucrose glasses”. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 13.8 (2011): 3514-3526.

38 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Highly Viscous States Affect the Browning of Atmospheric Organic Particulate Matter.
Liu P, Li YJ, Wang Y, Bateman AP, Zhang Y, Gong Z, Bertram AK, Martin ST., ACS Cent Sci 4(2), 2018
PMID: 29532020
Predicting the Kinetics of Ice Recrystallization in Aqueous Sugar Solutions.
van Westen T, Groot RD., Cryst Growth Des 18(4), 2018
PMID: 29651228
The viscosity of atmospherically relevant organic particles.
Reid JP, Bertram AK, Topping DO, Laskin A, Martin ST, Petters MD, Pope FD, Rovelli G., Nat Commun 9(1), 2018
PMID: 29511168
Influence of particle viscosity on mass transfer and heterogeneous ozonolysis kinetics in aqueous-sucrose-maleic acid aerosol.
Marshall FH, Berkemeier T, Shiraiwa M, Nandy L, Ohm PB, Dutcher CS, Reid JP., Phys Chem Chem Phys 20(22), 2018
PMID: 29808874
Resolving the mechanisms of hygroscopic growth and cloud condensation nuclei activity for organic particulate matter.
Liu P, Song M, Zhao T, Gunthe SS, Ham S, He Y, Qin YM, Gong Z, Amorim JC, Bertram AK, Martin ST., Nat Commun 9(1), 2018
PMID: 30287821
Diffusive confinement of free radical intermediates in the OH radical oxidation of semisolid aerosols.
Wiegel AA, Liu MJ, Hinsberg WD, Wilson KR, Houle FA., Phys Chem Chem Phys 19(9), 2017
PMID: 28218326
Global distribution of particle phase state in atmospheric secondary organic aerosols.
Shiraiwa M, Li Y, Tsimpidi AP, Karydis VA, Berkemeier T, Pandis SN, Lelieveld J, Koop T, Pöschl U., Nat Commun 8(), 2017
PMID: 28429776
Condensed-phase biogenic-anthropogenic interactions with implications for cold cloud formation.
Charnawskas JC, Alpert PA, Lambe AT, Berkemeier T, O'Brien RE, Massoli P, Onasch TB, Shiraiwa M, Moffet RC, Gilles MK, Davidovits P, Worsnop DR, Knopf DA., Faraday Discuss 200(), 2017
PMID: 28574555
A rapid scan vacuum FTIR method for determining diffusion coefficients in viscous and glassy aerosol particles.
Zhang Y, Cai C, Pang SF, Reid JP, Zhang YH., Phys Chem Chem Phys 19(43), 2017
PMID: 28944797
Characterising the evaporation kinetics of water and semi-volatile organic compounds from viscous multicomponent organic aerosol particles.
Ingram S, Cai C, Song YC, Glowacki DR, Topping DO, O'Meara S, Reid JP., Phys Chem Chem Phys 19(47), 2017
PMID: 29164191
Diffusion and reactivity in ultraviscous aerosol and the correlation with particle viscosity.
Marshall FH, Miles REH, Song YC, Ohm PB, Power RM, Reid JP, Dutcher CS., Chem Sci 7(2), 2016
PMID: 29910887
Direct imaging of changes in aerosol particle viscosity upon hydration and chemical aging.
Hosny NA, Fitzgerald C, Vyšniauskas A, Athanasiadis A, Berkemeier T, Uygur N, Pöschl U, Shiraiwa M, Kalberer M, Pope FD, Kuimova MK., Chem Sci 7(2), 2016
PMID: 29910892
Effect of viscosity on photodegradation rates in complex secondary organic aerosol materials.
Hinks ML, Brady MV, Lignell H, Song M, Grayson JW, Bertram AK, Lin P, Laskin A, Laskin J, Nizkorodov SA., Phys Chem Chem Phys 18(13), 2016
PMID: 26685987
Ozone uptake on glassy, semi-solid and liquid organic matter and the role of reactive oxygen intermediates in atmospheric aerosol chemistry.
Berkemeier T, Steimer SS, Krieger UK, Peter T, Pöschl U, Ammann M, Shiraiwa M., Phys Chem Chem Phys 18(18), 2016
PMID: 27095585
Sucrose diffusion in aqueous solution.
Price HC, Mattsson J, Murray BJ., Phys Chem Chem Phys 18(28), 2016
PMID: 27364512
Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles.
Fitzgerald C, Hosny NA, Tong H, Seville PC, Gallimore PJ, Davidson NM, Athanasiadis A, Botchway SW, Ward AD, Kalberer M, Kuimova MK, Pope FD., Phys Chem Chem Phys 18(31), 2016
PMID: 27430158
Variabilities and uncertainties in characterising water transport kinetics in glassy and ultraviscous aerosol.
Rickards AM, Song YC, Miles RE, Preston TC, Reid JP., Phys Chem Chem Phys 17(15), 2015
PMID: 25786190
Water diffusion in atmospherically relevant α-pinene secondary organic material.
Price HC, Mattsson J, Zhang Y, Bertram AK, Davies JF, Grayson JW, Martin ST, O'Sullivan D, Reid JP, Rickards AMJ, Murray BJ., Chem Sci 6(8), 2015
PMID: 28717493
Hygroscopic and phase transition properties of alkyl aminium sulfates at low relative humidities.
Chu Y, Sauerwein M, Chan CK., Phys Chem Chem Phys 17(30), 2015
PMID: 26153343
Slow water transport in MgSO4 aerosol droplets at gel-forming relative humidities.
Cai C, Tan S, Chen H, Ma J, Wang Y, Reid JP, Zhang Y., Phys Chem Chem Phys 17(44), 2015
PMID: 26479148
Timescales of water transport in viscous aerosol: measurements on sub-micron particles and dependence on conditioning history.
Lu JW, Rickards AM, Walker JS, Knox KJ, Miles RE, Reid JP, Signorell R., Phys Chem Chem Phys 16(21), 2014
PMID: 24316593
Retrieving the translational diffusion coefficient of water from experiments on single levitated aerosol droplets.
Lienhard DM, Huisman AJ, Bones DL, Te YF, Luo BP, Krieger UK, Reid JP., Phys Chem Chem Phys 16(31), 2014
PMID: 24998384
Low-temperature Bessel beam trap for single submicrometer aerosol particle studies.
Lu JW, Isenor M, Chasovskikh E, Stapfer D, Signorell R., Rev Sci Instrum 85(9), 2014
PMID: 25273772
Gas-particle partitioning of atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology.
Shiraiwa M, Zuend A, Bertram AK, Seinfeld JH., Phys Chem Chem Phys 15(27), 2013
PMID: 23748935
Detection of an intermediary, protonated water cluster in photosynthetic oxygen evolution.
Polander BC, Barry BA., Proc Natl Acad Sci U S A 110(26), 2013
PMID: 23757501
Experimental evidence for excess entropy discontinuities in glass-forming solutions.
Lienhard DM, Zobrist B, Zuend A, Krieger UK, Peter T., J Chem Phys 136(7), 2012
PMID: 22360256
Comparing the mechanism of water condensation and evaporation in glassy aerosol.
Bones DL, Reid JP, Lienhard DM, Krieger UK., Proc Natl Acad Sci U S A 109(29), 2012
PMID: 22753520
Phase of atmospheric secondary organic material affects its reactivity.
Kuwata M, Martin ST., Proc Natl Acad Sci U S A 109(43), 2012
PMID: 23045632
Gas uptake and chemical aging of semisolid organic aerosol particles.
Shiraiwa M, Ammann M, Koop T, Pöschl U., Proc Natl Acad Sci U S A 108(27), 2011
PMID: 21690350

62 References

Daten bereitgestellt von Europe PubMed Central.

Supercooled liquids and the glass transition.
Debenedetti PG, Stillinger FH., Nature 410(6825), 2001
PMID: 11258381

Slade, Crit. Rev. Food Sci. Nutr. 30(2–3), 1991

Goff, Food Res. Int. 25(4), 1992

Roberts, J. Phys. Chem. B 103(34), 1999

Roberts, AIchE J. 48(6), 2002

Champion, Trends Food Sci. Technol. 11(2), 2000
Long-term thermostabilization of live poxviral and adenoviral vaccine vectors at supraphysiological temperatures in carbohydrate glass.
Alcock R, Cottingham MG, Rollier CS, Furze J, De Costa SD, Hanlon M, Spencer AJ, Honeycutt JD, Wyllie DH, Gilbert SC, Bregu M, Hill AV., Sci Transl Med 2(19), 2010
PMID: 20371486

Angell, Formation of Glasses from Liquids and Biopolymers Science 267(5206), 1995

Shamblin, J. Phys. Chem. B 103(20), 1999

Zobrist, Atmos. Chem. Phys. 8(17), 2008

Mikhailov, Atmos. Chem. Phys. 9(), 2009

Karcher, Atmos. Chem. Phys. 5(), 2005
Atmosphere. When dry air is too humid.
Peter T, Marcolli C, Spichtinger P, Corti T, Baker MB, Koop T., Science 314(5804), 2006
PMID: 17138887

Murray, Atmos. Chem. Phys. 8(17), 2008

Murray, Nat. Geosci. 3(), 2010
An amorphous solid state of biogenic secondary organic aerosol particles.
Virtanen A, Joutsensaari J, Koop T, Kannosto J, Yli-Pirila P, Leskinen J, Makela JM, Holopainen JK, Poschl U, Kulmala M, Worsnop DR, Laaksonen A., Nature 467(7317), 2010
PMID: 20944744
Organic aerosol growth mechanisms and their climate-forcing implications.
Maria SF, Russell LM, Gilles MK, Myneni SC., Science 306(5703), 2004
PMID: 15591199

Shiraiwa, Atmos. Chem. Phys. 10(), 2010

Gillen, J. Chem. Phys. 57(12), 1972

Ekdawi-Sever, J. Phys. Chem. A 107(6), 2003

Parker, Carbohydr. Res. 273(2), 1995

Smith, Nature 398(6730), 1999

Crittenden, Trends Food Sci. Technol. 7(11), 1996

Graham, J. Geophys. Res., [Atmos.] 108(D24), 2003

Decesari, Atmos. Chem. Phys. 6(), 2006

Hagiwara, Food Biophys. 4(4), 2009

Girlich, Z. Naturforsch., C: J. Biosci. 49(3–4), 1994

He, J. Appl. Phys. 100(7), 2006

Krieger, Geophys. Res. Lett. 27(14), 2000

Colberg, J. Phys. Chem. A 108(14), 2004

Hesse, J. Aerosol Sci. 33(1), 2002

Murphy, Q. J. R. Meteorol. Soc. 131(608), 2005

Richardson, Rev. Sci. Instrum. 61(4), 1990

Krieger, J. Quant. Spectrosc. Radiat. Transfer 70(4–6), 2001
Precision of light scattering techniques for measuring optical parameters of microspheres.
Ray AK, Souyri A, Davis EJ, Allen TM., Appl Opt 30(27), 1991
PMID: 20706489

Rosenbruch, PTB-Mitt. 85(6), 1975

Marshak, Phys. Fluids 1(1), 1958

Robinson, J. Phys. Chem. 65(11), 1961

Dunning, J. Chem. Soc. (), 1951
Temperature dependence of water activity in aqueous solutions of sucrose.
Starzak M, Mathlouthi M., Food Chem 96(3), 2006
PMID: IND43775257

Burnett, Int. J. Pharm. 287(1–2), 2004

Zahardis, Atmos. Chem. Phys. 7(), 2007
Microscopic mechanism of water diffusion in glucose glasses.
Molinero V, Goddard WA 3rd., Phys. Rev. Lett. 95(4), 2005
PMID: 16090821

Ablett, J. Chem. Soc., Faraday Trans. 88(6), 1992
Water activity and freezing point depression of aqueous solutions and liquid foods.
Lerici CR, Piva M, Dalla Rosa M., J. Food Sci. 48(6), 1983
PMID: IND84001033

Seo, J. Korean Phys. Soc. 44(3), 2004

Miyata, J. Mol. Liq. 119(1–3), 2005

Peres, Fluid Phase Equilib. 123(1–2), 1996

Mishima, Nature 396(), 1998
Water activity as the determinant for homogeneous ice nucleation in aqueous solutions
Koop T, Luo B, Tsias A, Peter T., Nature 406(6796), 2000
PMID: 10949298

Gillen, J. Chem. Phys. 57(12), 1972

Prielmeier, Ber. Bunsen-Ges. 92(10), 1988

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21229162
PubMed | Europe PMC

Suchen in

Google Scholar