Orientation-defined alignment and immobilization of DNA between specific surfaces

Venkatesh A, Herth S, Becker A, Reiss G (2011)
Nanotechnology 22(14): 145301.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
DNA-based single-molecule studies, nanoelectronics and nanocargos require a precise placement of DNA in an orientation-defined manner. Until now, there is a lack of orientation-defined alignment and immobilization of DNA over distances smaller than several micrometers. However, this can be realized by designing bifunctionalized DNA with thiol at one end and (3-aminopropyl) triethoxy silane at the other end, which specifically binds to a gold and SiO2 layer after and during alignment, respectively. The electrode assembly consists of platinum as the electrode material for applying the AC voltage and islands of gold and silicon dioxide fabricated at a distance of about 500-800 nm by electron-beam lithography. The orientation-defined alignment and covalent binding of pUC19 DNA to specific surfaces are carried out in frequency ranges of 50 Hz-1 kHz and 100 kHz-1 MHz and observed after metallization of DNA by palladium ions by field emission scanning electron microscopy (FESEM). The bifunctionalized 890 nm long DNA was effectively aligned and immobilized between a gap of 500 to 600 nm width.
Erscheinungsjahr
Zeitschriftentitel
Nanotechnology
Band
22
Ausgabe
14
Seite(n)
145301
ISSN
eISSN
PUB-ID

Zitieren

Venkatesh A, Herth S, Becker A, Reiss G. Orientation-defined alignment and immobilization of DNA between specific surfaces. Nanotechnology. 2011;22(14):145301.
Venkatesh, A., Herth, S., Becker, A., & Reiss, G. (2011). Orientation-defined alignment and immobilization of DNA between specific surfaces. Nanotechnology, 22(14), 145301. doi:10.1088/0957-4484/22/14/145301
Venkatesh, A., Herth, S., Becker, A., and Reiss, G. (2011). Orientation-defined alignment and immobilization of DNA between specific surfaces. Nanotechnology 22, 145301.
Venkatesh, A., et al., 2011. Orientation-defined alignment and immobilization of DNA between specific surfaces. Nanotechnology, 22(14), p 145301.
A. Venkatesh, et al., “Orientation-defined alignment and immobilization of DNA between specific surfaces”, Nanotechnology, vol. 22, 2011, pp. 145301.
Venkatesh, A., Herth, S., Becker, A., Reiss, G.: Orientation-defined alignment and immobilization of DNA between specific surfaces. Nanotechnology. 22, 145301 (2011).
Venkatesh, Alagarswamy, Herth, Simone, Becker, Anke, and Reiss, Günter. “Orientation-defined alignment and immobilization of DNA between specific surfaces”. Nanotechnology 22.14 (2011): 145301.

28 References

Daten bereitgestellt von Europe PubMed Central.

Quantifying single gene copy number by measuring fluorescent probe lengths on combed genomic DNA.
Herrick J, Michalet X, Conti C, Schurra C, Bensimon A., Proc. Natl. Acad. Sci. U.S.A. 97(1), 2000
PMID: 10618399
Color bar coding the BRCA1 gene on combed DNA: a useful strategy for detecting large gene rearrangements.
Gad S, Aurias A, Puget N, Mairal A, Schurra C, Montagna M, Pages S, Caux V, Mazoyer S, Bensimon A, Stoppa-Lyonnet D., Genes Chromosomes Cancer 31(1), 2001
PMID: 11284038
Observation by fluorescence microscopy of transcription on single combed DNA.
Gueroui Z, Place C, Freyssingeas E, Berge B., Proc. Natl. Acad. Sci. U.S.A. 99(9), 2002
PMID: 11983896
Alignment and sensitive detection of DNA by a moving interface.
Bensimon A, Simon A, Chiffaudel A, Croquette V, Heslot F, Bensimon D., Science 265(5181), 1994
PMID: 7522347
Stretching DNA with a receding meniscus: Experiments and models.
Bensimon D, Simon AJ, Croquette V V, Bensimon A., Phys. Rev. Lett. 74(23), 1995
PMID: 10058590

AUTHOR UNKNOWN, 0
Stretching DNA with optical tweezers.
Wang MD, Yin H, Landick R, Gelles J, Block SM., Biophys. J. 72(3), 1997
PMID: 9138579

Maubach, Nanotechnology 14(), 2003
Protein-assisted stretching and immobilization of DNA molecules in a microchannel.
Dukkipati VR, Kim JH, Pang SW, Larson RG., Nano Lett. 6(11), 2006
PMID: 17090080

AUTHOR UNKNOWN, 0
Formation of lambda-DNA's in parallel- and crossed-line arrays by molecular combing and scanning-probe lithography.
Shin M, Kwon C, Kim SK, Kim HJ, Roh Y, Hong B, Park JB, Lee H., Nano Lett. 6(7), 2006
PMID: 16834406
Trapping of DNA by dielectrophoresis.
Asbury CL, Diercks AH, van den Engh G., Electrophoresis 23(16), 2002
PMID: 12210170
Dielectrophoresis of DNA: time- and frequency-dependent collections on microelectrodes.
Bakewell DJ, Morgan H., IEEE Trans Nanobioscience 5(1), 2006
PMID: 16570867
Trapping single molecules by dielectrophoresis.
Holzel R, Calander N, Chiragwandi Z, Willander M, Bier FF., Phys. Rev. Lett. 95(12), 2005
PMID: 16197115
Carbon nanotubes as electrodes for dielectrophoresis of DNA.
Tuukkanen S, Toppari JJ, Kuzyk A, Hirviniemi L, Hytonen VP, Ihalainen T, Torma P., Nano Lett. 6(7), 2006
PMID: 16834407
DNA electronics.
Bhalla V, Bajpai RP, Bharadwaj LM., EMBO Rep. 4(5), 2003
PMID: 12728239
Direct measurement of electrical transport through DNA molecules.
Porath D, Bezryadin A, de Vries S, Dekker C., Nature 403(6770), 2000
PMID: 10688194
A DNA nanotransport device powered by polymerase phi29.
Sahu S, LaBean TH, Reif JH., Nano Lett. 8(11), 2008
PMID: 18939810

Lin, Nanotechnology 16(), 2005

Tuukkanen, Nanotechnology 18(), 2007
Electrostretching DNA molecules using polymer-enhanced media within microfabricated devices.
Namasivayam V, Larson RG, Burke DT, Burns MA., Anal. Chem. 74(14), 2002
PMID: 12139043

AUTHOR UNKNOWN, 0
DNA-templated assembly and electrode attachment of a conducting silver wire.
Braun E, Eichen Y, Sivan U, Ben-Yoseph G., Nature 391(6669), 1998
PMID: 9486645
Silanized nucleic acids: a general platform for DNA immobilization.
Kumar A, Larsson O, Parodi D, Liang Z., Nucleic Acids Res. 28(14), 2000
PMID: 10908345

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21346298
PubMed | Europe PMC

Suchen in

Google Scholar