A FRET Sensor for Non-Invasive Imaging of Amyloid Formation in Vivo

Kaminski Schierle GS, Bertoncini CW, Chan FTS, van der Goot AT, Schwedler S, Skepper J, Schlachter S, van Ham T, Esposito A, Kumita JR, Nollen EAA, et al. (2011)
ChemPhysChem 12(3): 673-680.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kaminski Schierle, Gabriele S.; Bertoncini, Carlos W.; Chan, Fiona T. S.; van der Goot, Annemieke T.; Schwedler, StefanieUniBi ; Skepper, Jeremy; Schlachter, Simon; van Ham, Tjakko; Esposito, Alessandro; Kumita, Janet R.; Nollen, Ellen A. A.; Dobson, Christopher M.
Alle
Abstract / Bemerkung
Misfolding and aggregation of amyloidogenic polypeptides lie at the root of many neurodegenerative diseases. Whilst protein aggregation can be readily studied in vitro by established biophysical techniques, direct observation of the nature and kinetics of aggregation processes taking place in vivo is much more challenging. We describe here, however, a Forster resonance energy transfer sensor that permits the aggregation kinetics of amyloidogenic proteins to be quantified in living systems by exploiting our observation that amyloid assemblies can act as energy acceptors for variants of fluorescent proteins. The observed lifetime reduction can be attributed to fluorescence energy transfer to intrinsic energy states associated with the growing amyloid species. Indeed, for alpha-synuclein, a protein whose aggregation is linked to Parkinson's disease, we have used this sensor to follow the kinetics of the self-association reactions taking place in vitro and in vivo and to reveal the nature of the ensuing aggregated species. Experiments were conducted in vitro, in cells in culture and in living Caenorhabditis elegans. For the latter the readout correlates directly with the appearance of a toxic phenotype. The ability to measure the appearance and development of pathogenic amyloid species in a living animal and the ability to relate such data to similar processes observed in vitro provides a powerful new tool in the study of the pathology of the family of misfolding disorders. Our study confirms the importance of the molecular environment in which aggregation reactions take place, highlighting similarities as well as differences between the processes occurring in vitro and in vivo, and their significance for defining the molecular physiology of the diseases with which they are associated.
Stichworte
FLIM; biosensors; synuclein; protein folding; amyloid beta-peptides
Erscheinungsjahr
2011
Zeitschriftentitel
ChemPhysChem
Band
12
Ausgabe
3
Seite(n)
673-680
ISSN
1439-4235
Page URI
https://pub.uni-bielefeld.de/record/2093950

Zitieren

Kaminski Schierle GS, Bertoncini CW, Chan FTS, et al. A FRET Sensor for Non-Invasive Imaging of Amyloid Formation in Vivo. ChemPhysChem. 2011;12(3):673-680.
Kaminski Schierle, G. S., Bertoncini, C. W., Chan, F. T. S., van der Goot, A. T., Schwedler, S., Skepper, J., Schlachter, S., et al. (2011). A FRET Sensor for Non-Invasive Imaging of Amyloid Formation in Vivo. ChemPhysChem, 12(3), 673-680. https://doi.org/10.1002/cphc.201000996
Kaminski Schierle, Gabriele S., Bertoncini, Carlos W., Chan, Fiona T. S., van der Goot, Annemieke T., Schwedler, Stefanie, Skepper, Jeremy, Schlachter, Simon, et al. 2011. “A FRET Sensor for Non-Invasive Imaging of Amyloid Formation in Vivo”. ChemPhysChem 12 (3): 673-680.
Kaminski Schierle, G. S., Bertoncini, C. W., Chan, F. T. S., van der Goot, A. T., Schwedler, S., Skepper, J., Schlachter, S., van Ham, T., Esposito, A., Kumita, J. R., et al. (2011). A FRET Sensor for Non-Invasive Imaging of Amyloid Formation in Vivo. ChemPhysChem 12, 673-680.
Kaminski Schierle, G.S., et al., 2011. A FRET Sensor for Non-Invasive Imaging of Amyloid Formation in Vivo. ChemPhysChem, 12(3), p 673-680.
G.S. Kaminski Schierle, et al., “A FRET Sensor for Non-Invasive Imaging of Amyloid Formation in Vivo”, ChemPhysChem, vol. 12, 2011, pp. 673-680.
Kaminski Schierle, G.S., Bertoncini, C.W., Chan, F.T.S., van der Goot, A.T., Schwedler, S., Skepper, J., Schlachter, S., van Ham, T., Esposito, A., Kumita, J.R., Nollen, E.A.A., Dobson, C.M., Kaminski, C.F.: A FRET Sensor for Non-Invasive Imaging of Amyloid Formation in Vivo. ChemPhysChem. 12, 673-680 (2011).
Kaminski Schierle, Gabriele S., Bertoncini, Carlos W., Chan, Fiona T. S., van der Goot, Annemieke T., Schwedler, Stefanie, Skepper, Jeremy, Schlachter, Simon, van Ham, Tjakko, Esposito, Alessandro, Kumita, Janet R., Nollen, Ellen A. A., Dobson, Christopher M., and Kaminski, Clemens F. “A FRET Sensor for Non-Invasive Imaging of Amyloid Formation in Vivo”. ChemPhysChem 12.3 (2011): 673-680.

33 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Intrinsically aggregation-prone proteins form amyloid-like aggregates and contribute to tissue aging in Caenorhabditis elegans.
Huang C, Wagner-Valladolid S, Stephens AD, Jung R, Poudel C, Sinnige T, Lechler MC, Schlörit N, Lu M, Laine RF, Michel CH, Vendruscolo M, Kaminski CF, Kaminski Schierle GS, David DC., Elife 8(), 2019
PMID: 31050339
Shedding light on aberrant interactions - a review of modern tools for studying protein aggregates.
Kundel F, Tosatto L, Whiten DR, Wirthensohn DC, Horrocks MH, Klenerman D., FEBS J 285(19), 2018
PMID: 29453901
Fluorescence Self-Quenching from Reporter Dyes Informs on the Structural Properties of Amyloid Clusters Formed in Vitro and in Cells.
Chen W, Young LJ, Lu M, Zaccone A, Ströhl F, Yu N, Kaminski Schierle GS, Kaminski CF., Nano Lett 17(1), 2017
PMID: 28073262
Cellular Models for the Study of Prions.
Holmes BB, Diamond MI., Cold Spring Harb Perspect Med 7(2), 2017
PMID: 27815306
A computational study on how structure influences the optical properties in model crystal structures of amyloid fibrils.
Grisanti L, Pinotsi D, Gebauer R, Kaminski Schierle GS, Hassanali AA., Phys Chem Chem Phys 19(5), 2017
PMID: 28111679
Photoluminescent Peptide-Based Nanostructures as FRET Donor for Fluorophore Dye.
Diaferia C, Sibillano T, Giannini C, Roviello V, Vitagliano L, Morelli G, Accardo A., Chemistry 23(36), 2017
PMID: 28508550
32-channel time-correlated-single-photon-counting system for high-throughput lifetime imaging.
Peronio P, Labanca I, Acconcia G, Ruggeri A, Lavdas AA, Hicks AA, Pramstaller PP, Ghioni M, Rech I., Rev Sci Instrum 88(8), 2017
PMID: 28863689
Self-assembling peptide semiconductors.
Tao K, Makam P, Aizen R, Gazit E., Science 358(6365), 2017
PMID: 29146781
Nano-biosensors to detect beta-amyloid for Alzheimer's disease management.
Kaushik A, Jayant RD, Tiwari S, Vashist A, Nair M., Biosens Bioelectron 80(), 2016
PMID: 26851586
Microwave fields have little effect on α-synuclein aggregation in a Caenorhabditis elegans model of Parkinson's disease.
de Pomerai DI, Iqbal N, Lafayette I, Nagarajan A, Kaviani Moghadam M, Fineberg A, Reader T, Greedy S, Smartt C, Thomas DW., Bioelectromagnetics 37(2), 2016
PMID: 26879225
Cytosolic NADH-NAD(+) Redox Visualized in Brain Slices by Two-Photon Fluorescence Lifetime Biosensor Imaging.
Mongeon R, Venkatachalam V, Yellen G., Antioxid Redox Signal 25(10), 2016
PMID: 26857245
From single-molecule spectroscopy to super-resolution imaging of the neuron: a review.
Laine RF, Kaminski Schierle GS, van de Linde S, Kaminski CF., Methods Appl Fluoresc 4(2), 2016
PMID: 28809165
ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function.
Murakami T, Qamar S, Lin JQ, Schierle GS, Rees E, Miyashita A, Costa AR, Dodd RB, Chan FT, Michel CH, Kronenberg-Versteeg D, Li Y, Yang SP, Wakutani Y, Meadows W, Ferry RR, Dong L, Tartaglia GG, Favrin G, Lin WL, Dickson DW, Zhen M, Ron D, Schmitt-Ulms G, Fraser PE, Shneider NA, Holt C, Vendruscolo M, Kaminski CF, St George-Hyslop P., Neuron 88(4), 2015
PMID: 26526393
Real-time probing of β-amyloid self-assembly and inhibition using fluorescence self-quenching between neighbouring dyes.
Quinn SD, Dalgarno PA, Cameron RT, Hedley GJ, Hacker C, Lucocq JM, Baillie GS, Samuel ID, Penedo JC., Mol Biosyst 10(1), 2014
PMID: 24170094
Extracellular monomeric tau protein is sufficient to initiate the spread of tau protein pathology.
Michel CH, Kumar S, Pinotsi D, Tunnacliffe A, St George-Hyslop P, Mandelkow E, Mandelkow EM, Kaminski CF, Kaminski Schierle GS., J Biol Chem 289(2), 2014
PMID: 24235150
Biophysical groundwork as a hinge to unravel the biology of α-synuclein aggregation and toxicity.
Plotegher N, Greggio E, Bisaglia M, Bubacco L., Q Rev Biophys 47(1), 2014
PMID: 24443929
Stages and conformations of the Tau repeat domain during aggregation and its effect on neuronal toxicity.
Kumar S, Tepper K, Kaniyappan S, Biernat J, Wegmann S, Mandelkow EM, Müller DJ, Mandelkow E., J Biol Chem 289(29), 2014
PMID: 24825901
Direct observations of amyloid β self-assembly in live cells provide insights into differences in the kinetics of Aβ(1-40) and Aβ(1-42) aggregation.
Esbjörner EK, Chan F, Rees E, Erdelyi M, Luheshi LM, Bertoncini CW, Kaminski CF, Dobson CM, Kaminski Schierle GS., Chem Biol 21(6), 2014
PMID: 24856820
Timing protein assembly in neurons.
Sauer M., Chem Biol 21(6), 2014
PMID: 24950101
Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs).
Theillet FX, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ, Elcock AH, Gershenson A, Selenko P., Chem Rev 114(13), 2014
PMID: 24901537
Protein amyloids develop an intrinsic fluorescence signature during aggregation.
Chan FT, Kaminski Schierle GS, Kumita JR, Bertoncini CW, Dobson CM, Kaminski CF., Analyst 138(7), 2013
PMID: 23420088
A label-free, quantitative assay of amyloid fibril growth based on intrinsic fluorescence.
Pinotsi D, Buell AK, Dobson CM, Kaminski Schierle GS, Kaminski CF., Chembiochem 14(7), 2013
PMID: 23592254
Cerebellar soluble mutant ataxin-3 level decreases during disease progression in Spinocerebellar Ataxia Type 3 mice.
Nguyen HP, Hübener J, Weber JJ, Grueninger S, Riess O, Weiss A., PLoS One 8(4), 2013
PMID: 23626768
ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism.
Murakami T, Yang SP, Xie L, Kawano T, Fu D, Mukai A, Bohm C, Chen F, Robertson J, Suzuki H, Tartaglia GG, Vendruscolo M, Kaminski Schierle GS, Chan FT, Moloney A, Crowther D, Kaminski CF, Zhen M, St George-Hyslop P., Hum Mol Genet 21(1), 2012
PMID: 21949354
Imaging nanometer-sized α-synuclein aggregates by superresolution fluorescence localization microscopy.
Roberti MJ, Fölling J, Celej MS, Bossi M, Jovin TM, Jares-Erijman EA., Biophys J 102(7), 2012
PMID: 22500760
Early amyloidogenic oligomerization studied through fluorescence lifetime correlation spectroscopy.
Paredes JM, Casares S, Ruedas-Rama MJ, Fernandez E, Castello F, Varela L, Orte A., Int J Mol Sci 13(8), 2012
PMID: 22949804
Analysis of the native structure, stability and aggregation of biotinylated human lysozyme.
Ahn M, De Genst E, Kaminski Schierle GS, Erdelyi M, Kaminski CF, Dobson CM, Kumita JR., PLoS One 7(11), 2012
PMID: 23166837

64 References

Daten bereitgestellt von Europe PubMed Central.

Protein folding and misfolding.
Dobson CM., Nature 426(6968), 2003
PMID: 14685248
Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer's disease.
Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ, Hyman BT., Nature 451(7179), 2008
PMID: 18256671

AUTHOR UNKNOWN, 0
Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-beta ligand in transgenic mice.
Bacskai BJ, Hickey GA, Skoch J, Kajdasz ST, Wang Y, Huang GF, Mathis CA, Klunk WE, Hyman BT., Proc. Natl. Acad. Sci. U.S.A. 100(21), 2003
PMID: 14517353
Imaging intracellular fluorescent proteins at nanometer resolution.
Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF., Science 313(5793), 2006
PMID: 16902090
Direct observation of the nanoscale dynamics of membrane lipids in a living cell.
Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW., Nature 457(7233), 2008
PMID: 19098897

Dai, Polymer 47(), 2006
Molecular pathways of neurodegeneration in Parkinson's disease.
Dawson TM, Dawson VL., Science 302(5646), 2003
PMID: 14593166
alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies.
Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M., Proc. Natl. Acad. Sci. U.S.A. 95(11), 1998
PMID: 9600990
Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases.
Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M., Nature 416(6880), 2002
PMID: 11932737
Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy.
Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D., Science 305(5688), 2004
PMID: 15333840
A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications.
Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A., Nat. Biotechnol. 20(1), 2002
PMID: 11753368
Charge transport and intrinsic fluorescence in amyloid-like fibrils.
Del Mercato LL, Pompa PP, Maruccio G, Della Torre A, Sabella S, Tamburro AM, Cingolani R, Rinaldi R., Proc. Natl. Acad. Sci. U.S.A. 104(46), 2007
PMID: 17984067
A white light confocal microscope for spectrally resolved multidimensional imaging.
Frank JH, Elder AD, Swartling J, Venkitaraman AR, Jeyasekharan AD, Kaminski CF., J Microsc 227(Pt 3), 2007
PMID: 17760615

Elder, J. R. Soc. Interface 6(), 2009
C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging.
van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA., PLoS Genet. 4(3), 2008
PMID: 18369446
Towards multiparametric fluorescent imaging of amyloid formation: studies of a YFP model of alpha-synuclein aggregation.
van Ham TJ, Esposito A, Kumita JR, Hsu ST, Kaminski Schierle GS, Kaminski CF, Dobson CM, Nollen EA, Bertoncini CW., J. Mol. Biol. 395(3), 2009
PMID: 19891973
beta-Synuclein inhibits alpha-synuclein aggregation: a possible role as an anti-parkinsonian factor.
Hashimoto M, Rockenstein E, Mante M, Mallory M, Masliah E., Neuron 32(2), 2001
PMID: 11683992
The flavonoid baicalein inhibits fibrillation of alpha-synuclein and disaggregates existing fibrils.
Zhu M, Rajamani S, Kaylor J, Han S, Zhou F, Fink AL., J. Biol. Chem. 279(26), 2004
PMID: 15096521
Efficient electroporation of DNA and protein into confluent and differentiated epithelial cells in culture.
Deora AA, Diaz F, Schreiner R, Rodriguez-Boulan E., Traffic 8(10), 2007
PMID: 17662027
A comparison of amyloid fibrillogenesis using the novel fluorescent compound K114.
Crystal AS, Giasson BI, Crowe A, Kung MP, Zhuang ZP, Trojanowski JQ, Lee VM., J. Neurochem. 86(6), 2003
PMID: 12950445
Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation.
Nollen EA, Garcia SM, van Haaften G, Kim S, Chavez A, Morimoto RI, Plasterk RH., Proc. Natl. Acad. Sci. U.S.A. 101(17), 2004
PMID: 15084750

AUTHOR UNKNOWN, 0
Opposing activities protect against age-onset proteotoxicity.
Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A., Science 313(5793), 2006
PMID: 16902091
Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model.
Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA., Proc. Natl. Acad. Sci. U.S.A. 105(2), 2008
PMID: 18182484

AUTHOR UNKNOWN, 0
Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity.
Chen S, Berthelier V, Yang W, Wetzel R., J. Mol. Biol. 311(1), 2001
PMID: 11469866

AUTHOR UNKNOWN, 0

Nielsen, Angew. Chem. 121(), 2009
Unique identification of supramolecular structures in amyloid fibrils by solid-state NMR spectroscopy.
Nielsen JT, Bjerring M, Jeppesen MD, Pedersen RO, Pedersen JM, Hein KL, Vosegaard T, Skrydstrup T, Otzen DE, Nielsen NC., Angew. Chem. Int. Ed. Engl. 48(12), 2009
PMID: 19130518
Solid-state NMR spectroscopy of amyloid proteins.
Heise H., Chembiochem 9(2), 2008
PMID: 18161737
Structural properties and dynamic behavior of nonfibrillar oligomers formed by PrP(106-126).
Walsh P, Neudecker P, Sharpe S., J. Am. Chem. Soc. 132(22), 2010
PMID: 20465257

AUTHOR UNKNOWN, 0

Lemmer, Chem. Phys. Lett. 240(), 1995

AUTHOR UNKNOWN, 0
Theory and application of fluorescence homotransfer to melittin oligomerization.
Runnels LW, Scarlata SF., Biophys. J. 69(4), 1995
PMID: 8534828
Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons.
Mosharov EV, Larsen KE, Kanter E, Phillips KA, Wilson K, Schmitz Y, Krantz DE, Kobayashi K, Edwards RH, Sulzer D., Neuron 62(2), 2009
PMID: 19409267

AUTHOR UNKNOWN, 0
Lysosomal degradation of alpha-synuclein in vivo.
Mak SK, McCormack AL, Manning-Bog AB, Cuervo AM, Di Monte DA., J. Biol. Chem. 285(18), 2010
PMID: 20200163

AUTHOR UNKNOWN, 0
Dependence of alpha-synuclein aggregate morphology on solution conditions.
Hoyer W, Antony T, Cherny D, Heim G, Jovin TM, Subramaniam V., J. Mol. Biol. 322(2), 2002
PMID: 12217698
Impact of the acidic C-terminal region comprising amino acids 109-140 on alpha-synuclein aggregation in vitro.
Hoyer W, Cherny D, Subramaniam V, Jovin TM., Biochemistry 43(51), 2004
PMID: 15610017
A causative link between the structure of aberrant protein oligomers and their toxicity.
Campioni S, Mannini B, Zampagni M, Pensalfini A, Parrini C, Evangelisti E, Relini A, Stefani M, Dobson CM, Cecchi C, Chiti F., Nat. Chem. Biol. 6(2), 2010
PMID: 20081829
Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity.
Gidalevitz T, Krupinski T, Garcia S, Morimoto RI., PLoS Genet. 5(3), 2009
PMID: 19266020

AUTHOR UNKNOWN, 0
Biophotonic techniques for the study of malaria-infected red blood cells.
Mauritz JM, Esposito A, Tiffert T, Skepper JN, Warley A, Yoon YZ, Cicuta P, Lew VL, Guck JR, Kaminski CF., Med Biol Eng Comput 48(10), 2010
PMID: 20661776
Rotaviruses associate with cellular lipid droplet components to replicate in viroplasms, and compounds disrupting or blocking lipid droplets inhibit viroplasm formation and viral replication.
Cheung W, Gill M, Esposito A, Kaminski CF, Courousse N, Chwetzoff S, Trugnan G, Keshavan N, Lever A, Desselberger U., J. Virol. 84(13), 2010
PMID: 20335253
Fluorescence intensity and lifetime imaging of free and micellar-encapsulated doxorubicin in living cells.
Dai X, Yue Z, Eccleston ME, Swartling J, Slater NK, Kaminski CF., Nanomedicine 4(1), 2008
PMID: 18249155
FRET imaging of hemoglobin concentration in Plasmodium falciparum-infected red cells.
Esposito A, Tiffert T, Mauritz JM, Schlachter S, Bannister LH, Kaminski CF, Lew VL., PLoS ONE 3(11), 2008
PMID: 19023444

AUTHOR UNKNOWN, 0
Quantitative imaging of human red blood cells infected with Plasmodium falciparum.
Esposito A, Choimet JB, Skepper JN, Mauritz JM, Lew VL, Kaminski CF, Tiffert T., Biophys. J. 99(3), 2010
PMID: 20682274
A method to unmix multiple fluorophores in microscopy images with minimal a priori information.
Schlachter S, Schwedler S, Esposito A, Kaminski Schierle GS, Moggridge GD, Kaminski CF., Opt Express 17(25), 2009
PMID: 20052200
Catalytic and chaperone-like functions in an intrinsically disordered protein associated with desiccation tolerance.
Chakrabortee S, Meersman F, Kaminski Schierle GS, Bertoncini CW, McGee B, Kaminski CF, Tunnacliffe A., Proc. Natl. Acad. Sci. U.S.A. 107(37), 2010
PMID: 20805515
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21308945
PubMed | Europe PMC

Suchen in

Google Scholar