Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'

Wu ML, de Vries S, van Alen TA, Butler MK, Op den Camp HJM, Keltjens JT, Jetten MSM, Strous M (2011)
Microbiology 157(3): 890-898.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Wu, Ming L.; de Vries, Simon; van Alen, Theo A.; Butler, Margaret K.; Op den Camp, Huub J. M.; Keltjens, Jan T.; Jetten, Mike S. M.; Strous, MarcUniBi
Abstract / Bemerkung
The anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera' ('Ca. M. oxyfera') produces oxygen from nitrite by a novel pathway. The major part of the O-2 is used for methane activation and oxidation, which proceeds by the route well known for aerobic methanotrophs. Residual oxygen may serve other purposes, such as respiration. We have found that the genome of 'Ca. M. oxyfera' harbours four sets of genes encoding terminal respiratory oxidases: two cytochrome c oxidases, a third putative bo-type ubiquinol oxidase, and a cyanide-insensitive alternative oxidase. Illumine sequencing of reverse-transcribed total community RNA and quantitative real-time RT-PCR showed that all four sets of genes were transcribed, albeit at low levels. Oxygen-uptake and inhibition experiments, UV-visible absorption spectral characteristics and EPR spectroscopy of solubilized membranes showed that only one of the four oxidases is functionally produced by 'Ca. M. oxyfera', notably the membrane-bound bo-type terminal oxidase. These findings open a new role for terminal respiratory oxidases in anaerobic systems, and are an additional indication of the flexibility of terminal oxidases, of which the distribution among anaerobic micro-organisms may be largely underestimated.
Erscheinungsjahr
2011
Zeitschriftentitel
Microbiology
Band
157
Ausgabe
3
Seite(n)
890-898
ISSN
1350-0872
eISSN
1465-2080
Page URI
https://pub.uni-bielefeld.de/record/2093655

Zitieren

Wu ML, de Vries S, van Alen TA, et al. Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'. Microbiology. 2011;157(3):890-898.
Wu, M. L., de Vries, S., van Alen, T. A., Butler, M. K., Op den Camp, H. J. M., Keltjens, J. T., Jetten, M. S. M., et al. (2011). Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'. Microbiology, 157(3), 890-898. https://doi.org/10.1099/mic.0.045187-0
Wu, Ming L., de Vries, Simon, van Alen, Theo A., Butler, Margaret K., Op den Camp, Huub J. M., Keltjens, Jan T., Jetten, Mike S. M., and Strous, Marc. 2011. “Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'”. Microbiology 157 (3): 890-898.
Wu, M. L., de Vries, S., van Alen, T. A., Butler, M. K., Op den Camp, H. J. M., Keltjens, J. T., Jetten, M. S. M., and Strous, M. (2011). Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'. Microbiology 157, 890-898.
Wu, M.L., et al., 2011. Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'. Microbiology, 157(3), p 890-898.
M.L. Wu, et al., “Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'”, Microbiology, vol. 157, 2011, pp. 890-898.
Wu, M.L., de Vries, S., van Alen, T.A., Butler, M.K., Op den Camp, H.J.M., Keltjens, J.T., Jetten, M.S.M., Strous, M.: Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'. Microbiology. 157, 890-898 (2011).
Wu, Ming L., de Vries, Simon, van Alen, Theo A., Butler, Margaret K., Op den Camp, Huub J. M., Keltjens, Jan T., Jetten, Mike S. M., and Strous, Marc. “Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'”. Microbiology 157.3 (2011): 890-898.

14 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Isoprenoid Quinones Resolve the Stratification of Redox Processes in a Biogeochemical Continuum from the Photic Zone to Deep Anoxic Sediments of the Black Sea.
Becker KW, Elling FJ, Schröder JM, Lipp JS, Goldhammer T, Zabel M, Elvert M, Overmann J, Hinrichs KU., Appl Environ Microbiol 84(10), 2018
PMID: 29523543
Bloom of a denitrifying methanotroph, 'Candidatus Methylomirabilis limnetica', in a deep stratified lake.
Graf JS, Mayr MJ, Marchant HK, Tienken D, Hach PF, Brand A, Schubert CJ, Kuypers MMM, Milucka J., Environ Microbiol 20(7), 2018
PMID: 29806730
Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in Chinese wetland ecosystems.
Zhu G, Zhou L, Wang Y, Wang S, Guo J, Long XE, Sun X, Jiang B, Hou Q, Jetten MS, Yin C., Environ Microbiol Rep 7(1), 2015
PMID: 25223900
Anaerobic oxidation of methane: an "active" microbial process.
Cui M, Ma A, Qi H, Zhuang X, Zhuang G., Microbiologyopen 4(1), 2015
PMID: 25530008
The evolution of respiratory O2/NO reductases: an out-of-the-phylogenetic-box perspective.
Ducluzeau AL, Schoepp-Cothenet B, van Lis R, Baymann F, Russell MJ, Nitschke W., J R Soc Interface 11(98), 2014
PMID: 24968694
Multiple Rieske/cytb complexes in a single organism.
ten Brink F, Schoepp-Cothenet B, van Lis R, Nitschke W, Baymann F., Biochim Biophys Acta 1827(11-12), 2013
PMID: 23507620
Ultrastructure of the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera," a novel polygon-shaped bacterium.
Wu ML, van Teeseling MC, Willems MJ, van Donselaar EG, Klingl A, Rachel R, Geerts WJ, Jetten MS, Strous M, van Niftrik L., J Bacteriol 194(2), 2012
PMID: 22020652
Effect of oxygen on the anaerobic methanotroph 'Candidatus Methylomirabilis oxyfera': kinetic and transcriptional analysis.
Luesken FA, Wu ML, Op den Camp HJ, Keltjens JT, Stunnenberg H, Francoijs KJ, Strous M, Jetten MS., Environ Microbiol 14(4), 2012
PMID: 22221911
Microbiology, ecology, and application of the nitrite-dependent anaerobic methane oxidation process.
Shen LD, He ZF, Zhu Q, Chen DQ, Lou LP, Xu XY, Zheng P, Hu BL., Front Microbiol 3(), 2012
PMID: 22905032
Bacterial oxygen production in the dark.
Ettwig KF, Speth DR, Reimann J, Wu ML, Jetten MS, Keltjens JT., Front Microbiol 3(), 2012
PMID: 22891064
A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'.
Wu ML, Ettwig KF, Jetten MS, Strous M, Keltjens JT, van Niftrik L., Biochem Soc Trans 39(1), 2011
PMID: 21265781
Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake.
Deutzmann JS, Schink B., Appl Environ Microbiol 77(13), 2011
PMID: 21551281

35 References

Daten bereitgestellt von Europe PubMed Central.

Structure of cytochrome c oxidase: a comparison of the bacterial and mitochondrial enzymes.
Abramson J, Svensson-Ek M, Byrne B, Iwata S., Biochim. Biophys. Acta 1544(1-2), 2001
PMID: 11341911
Membrane-bound diiron carboxylate proteins.
Berthold DA, Stenmark P., Annu Rev Plant Biol 54(), 2003
PMID: 14503001
EPR studies of the mitochondrial alternative oxidase. Evidence for a diiron carboxylate center.
Berthold DA, Voevodskaya N, Stenmark P, Graslund A, Nordlund P., J. Biol. Chem. 277(46), 2002
PMID: 12215444
Cytochrome bd oxidase, oxidative stress, and dioxygen tolerance of the strictly anaerobic bacterium Moorella thermoacetica.
Das A, Silaghi-Dumitrescu R, Ljungdahl LG, Kurtz DM Jr., J. Bacteriol. 187(6), 2005
PMID: 15743950
Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea.
Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJ, Jetten MS, Strous M., Environ. Microbiol. 10(11), 2008
PMID: 18721142
Nitrite-driven anaerobic methane oxidation by oxygenic bacteria.
Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M., Nature 464(7288), 2010
PMID: 20336137
Structure of a dioxygen reduction enzyme from Desulfovibrio gigas.
Frazao C, Silva G, Gomes CM, Matias P, Coelho R, Sieker L, Macedo S, Liu MY, Oliveira S, Teixeira M, Xavier AV, Rodrigues-Pousada C, Carrondo MA, Le Gall J., Nat. Struct. Biol. 7(11), 2000
PMID: 11062560
The superfamily of heme-copper respiratory oxidases.
Garcia-Horsman JA, Barquera B, Rumbley J, Ma J, Gennis RB., J. Bacteriol. 176(18), 1994
PMID: 8083153
The biochemistry of methane oxidation.
Hakemian AS, Rosenzweig AC., Annu. Rev. Biochem. 76(), 2007
PMID: 17328677
Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.
Krogh A, Larsson B, von Heijne G, Sonnhammer EL., J. Mol. Biol. 305(3), 2001
PMID: 11152613
Bacillus subtilis expresses two kinds of haem-A-containing terminal oxidases.
Lauraeus M, Haltia T, Saraste M, Wikstrom M., Eur. J. Biochem. 197(3), 1991
PMID: 1851483
Comparison of EPR-visible Cu(2+) sites in pMMO from Methylococcus capsulatus (Bath) and Methylomicrobium album BG8.
Lemos SS, Perille Collins ML, Eaton SS, Eaton GR, Antholine WE., Biophys. J. 79(2), 2000
PMID: 10920038
Compelling EPR evidence that the alternative oxidase is a diiron carboxylate protein.
Moore AL, Carre JE, Affourtit C, Albury MS, Crichton PG, Kita K, Heathcote P., Biochim. Biophys. Acta 1777(4), 2008
PMID: 18243125
Comparison of ubiquinol and cytochrome c terminal oxidases. An alternative view.
Musser SM, Stowell MH, Chan SI., FEBS Lett. 327(2), 1993
PMID: 8392948
The bacterial cytochrome cbb3 oxidases.
Pitcher RS, Watmough NJ., Biochim. Biophys. Acta 1655(1-3), 2004
PMID: 15100055
The heme groups of cytochrome o from Escherichia coli.
Puustinen A, Wikstrom M., Proc. Natl. Acad. Sci. U.S.A. 88(14), 1991
PMID: 2068092
A microbial consortium couples anaerobic methane oxidation to denitrification.
Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damste JS, Op den Camp HJ, Jetten MS, Strous M., Nature 440(7086), 2006
PMID: 16612380

AUTHOR UNKNOWN, FEBS Lett. 96(), 1978
In vitro heme O synthesis by the cyoE gene product from Escherichia coli.
Saiki K, Mogi T, Ogura K, Anraku Y., J. Biol. Chem. 268(35), 1993
PMID: 8253713
Specific inhibition of the cyanide-insensitive respiratory pathway in plant mitochondria by hydroxamic acids.
Schonbaum GR, Bonner WD Jr, Storey BT, Bahr JT., Plant Physiol. 47(1), 1971
PMID: 5543780
A hidden Markov model for predicting transmembrane helices in protein sequences.
Sonnhammer EL, von Heijne G, Krogh A., Proc Int Conf Intell Syst Mol Biol 6(), 1998
PMID: 9783223
Identification of essential amino acids within the proposed CuA binding site in subunit II of Cytochrome c oxidase.
Speno H, Taheri MR, Sieburth D, Martin CT., J. Biol. Chem. 270(43), 1995
PMID: 7592701

AUTHOR UNKNOWN, Biochemistry 40(), 2001
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Tamura K, Dudley J, Nei M, Kumar S., Mol. Biol. Evol. 24(8), 2007
PMID: 17488738
Purification and characterization of chlorite dismutase: a novel oxygen-generating enzyme.
van Ginkel CG, Rikken GB, Kroon AG, Kengen SW., Arch. Microbiol. 166(5), 1996
PMID: 8929278
Microevolution of cytochrome bd oxidase in Staphylococci and its implication in resistance to respiratory toxins released by Pseudomonas.
Voggu L, Schlag S, Biswas R, Rosenstein R, Rausch C, Gotz F., J. Bacteriol. 188(23), 2006
PMID: 17108291
The CuAsite of the caa3-type oxidase of Bacillus subtilis is a mixed-valence binuclear copper centre.
von Wachenfeldt C, de Vries S, van der Oost J., FEBS Lett. 340(1-2), 1994
PMID: 8119391
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21071492
PubMed | Europe PMC

Suchen in

Google Scholar