Self-Recognition Among Different Polyprotic Macroions During Assembly Processes in Dilute Solution

Liu T, Langston MLK, Li D, Pigga JM, Pichon C, Todea AM, Müller A (2011)
Science 331(6024): 1590-1592.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Liu, Tianbo; Langston, Melissa L. K.; Li, Dong; Pigga, Joseph M.; Pichon, Celine; Todea, Ana MariaUniBi; Müller, AchimUniBi
Abstract / Bemerkung
We report a self-recognition phenomenon based on an assembly process in a homogeneous dilute aqueous solution of two nano-scaled, spherical polyprotic metal oxide-based macroions (neutral species in crystals), also called Keplerates of the type [(linker)(30)(pentagon)(12)]=[{M(H2O)}(30){(Mo)Mo-5}(12)] where M is Fe-III or Cr-III. Upon deprotonation of the neutral species, the resulting macroions assemble into hollow "blackberry"-type structures through very slow homogeneous dimer-oligomerization processes. Although the geometrical surface structures of the two macroions are practically identical, mixtures of these form homogeneous superstructures, rather than mixed species. The phase separation is based on the difference in macroionic charge densities present during the slow homogeneous dimer or oligomer formation. The surface water ligands' residence times of Cr-III and Fe-III differ markedly and lead to very different interfacial water mobilities between the Keplerates.
Erscheinungsjahr
2011
Zeitschriftentitel
Science
Band
331
Ausgabe
6024
Seite(n)
1590-1592
ISSN
0036-8075
eISSN
1095-9203
Page URI
https://pub.uni-bielefeld.de/record/2093604

Zitieren

Liu T, Langston MLK, Li D, et al. Self-Recognition Among Different Polyprotic Macroions During Assembly Processes in Dilute Solution. Science. 2011;331(6024):1590-1592.
Liu, T., Langston, M. L. K., Li, D., Pigga, J. M., Pichon, C., Todea, A. M., & Müller, A. (2011). Self-Recognition Among Different Polyprotic Macroions During Assembly Processes in Dilute Solution. Science, 331(6024), 1590-1592. https://doi.org/10.1126/science.1201121
Liu, Tianbo, Langston, Melissa L. K., Li, Dong, Pigga, Joseph M., Pichon, Celine, Todea, Ana Maria, and Müller, Achim. 2011. “Self-Recognition Among Different Polyprotic Macroions During Assembly Processes in Dilute Solution”. Science 331 (6024): 1590-1592.
Liu, T., Langston, M. L. K., Li, D., Pigga, J. M., Pichon, C., Todea, A. M., and Müller, A. (2011). Self-Recognition Among Different Polyprotic Macroions During Assembly Processes in Dilute Solution. Science 331, 1590-1592.
Liu, T., et al., 2011. Self-Recognition Among Different Polyprotic Macroions During Assembly Processes in Dilute Solution. Science, 331(6024), p 1590-1592.
T. Liu, et al., “Self-Recognition Among Different Polyprotic Macroions During Assembly Processes in Dilute Solution”, Science, vol. 331, 2011, pp. 1590-1592.
Liu, T., Langston, M.L.K., Li, D., Pigga, J.M., Pichon, C., Todea, A.M., Müller, A.: Self-Recognition Among Different Polyprotic Macroions During Assembly Processes in Dilute Solution. Science. 331, 1590-1592 (2011).
Liu, Tianbo, Langston, Melissa L. K., Li, Dong, Pigga, Joseph M., Pichon, Celine, Todea, Ana Maria, and Müller, Achim. “Self-Recognition Among Different Polyprotic Macroions During Assembly Processes in Dilute Solution”. Science 331.6024 (2011): 1590-1592.

39 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Tuning of Polyoxopalladate Macroanionic Hydration Shell via Countercation Interaction.
He J, Li H, Yang P, Haso F, Wu J, Li T, Kortz U, Liu T., Chemistry 24(12), 2018
PMID: 29274238
Effect of Cation-π Interaction on Macroionic Self-Assembly.
Luo J, Chen K, Yin P, Li T, Wan G, Zhang J, Ye S, Bi X, Pang Y, Wei Y, Liu T., Angew Chem Int Ed Engl 57(15), 2018
PMID: 29441703
Radiolabeled polyoxometalate clusters: Kidney dysfunction evaluation and tumor diagnosis by positron emission tomography imaging.
Ni D, Jiang D, Im HJ, Valdovinos HF, Yu B, Goel S, Barnhart TE, Huang P, Cai W., Biomaterials 171(), 2018
PMID: 29689411
Homogeneous and Heterogeneous Anion Sensing by a Molecular Cobalt-Vanadium Oxide.
Heiland M, Seliverstov A, Schwarz B, Anjass MH, Streb C., Chemistry 23(9), 2017
PMID: 27996175
Cation Translocation around Single Polyoxometalate-Organic Hybrid Cluster Regulated by Electrostatic and Cation-π Interactions.
Li D, Liu Z, Song J, Li H, Zhang B, Yin P, Zheng ZN, Roberts JE, Tsige M, Hill CL, Liu T., Angew Chem Int Ed Engl 56(12), 2017
PMID: 28198073
Bioresponsive Polyoxometalate Cluster for Redox-Activated Photoacoustic Imaging-Guided Photothermal Cancer Therapy.
Ni D, Jiang D, Valdovinos HF, Ehlerding EB, Yu B, Barnhart TE, Huang P, Cai W., Nano Lett 17(5), 2017
PMID: 28418679
Coordination and supramolecular assembly of {Cd2Ge8V12O48} building block and cucurbit[6] to form rotaxane-shaped hybrids.
Wei MJ, Zang HY, Zhou EL, Shao KZ, Song BQ, Wang XL, Su ZM., Dalton Trans 45(12), 2016
PMID: 26934989
Hedgehog-shaped {Mo368} cluster: unique electronic/structural properties, surfactant encapsulation and related self-assembly into vesicles and films.
Garai S, Merca A, Bhowmik S, El Moll H, Li H, Haso F, Nogueira H, Liu T, Wu L, Gouzerh P, Müller A., Soft Matter 11(12), 2015
PMID: 25629447
Chiral recognition and selection during the self-assembly process of protein-mimic macroanions.
Yin P, Zhang ZM, Lv H, Li T, Haso F, Hu L, Zhang B, Bacsa J, Wei Y, Gao Y, Hou Y, Li YG, Hill CL, Wang EB, Liu T., Nat Commun 6(), 2015
PMID: 25756393
Crown-shaped tungstogermanates as solvent-controlled dual systems in the formation of vesicle-like assemblies.
Artetxe B, Reinoso S, San Felices L, Gutiérrez-Zorrilla JM, García JA, Haso F, Liu T, Vicent C., Chemistry 21(21), 2015
PMID: 25916974
Exploring the effect of surface functionality on the self-assembly of polyoxopalladate macroions.
Haso F, Yang P, Gao Y, Yin P, Li H, Li T, Kortz U, Liu T., Chemistry 21(25), 2015
PMID: 25966352
A {Nb6 P2 W12 }-Based Hexameric Manganese Cluster with Single-Molecule Magnet Properties.
Zhang D, Cao F, Ma P, Zhang C, Song Y, Liang Z, Hu X, Wang J, Niu J., Chemistry 21(49), 2015
PMID: 26493685
Selective Permeability of Uranyl Peroxide Nanocages to Different Alkali Ions: Influences from Surface Pores and Hydration Shells.
Gao Y, Haso F, Szymanowski JE, Zhou J, Hu L, Burns PC, Liu T., Chemistry 21(51), 2015
PMID: 26568062
Manipulation of discrete nanostructures by selective modulation of noncovalent forces.
Fukino T, Joo H, Hisada Y, Obana M, Yamagishi H, Hikima T, Takata M, Fujita N, Aida T., Science 344(6183), 2014
PMID: 24786075
Multivalent recognition of concanavalin A by {Mo₁₃₂ } glyconanocapsules--toward biomimetic hybrid multilayers.
Barboiu M, Mouline Z, Silion M, Licsandru E, Simionescu BC, Mahon E, Pinteala M., Chemistry 20(22), 2014
PMID: 24756773
The anion-binding polyanion: a molecular cobalt vanadium oxide with anion-sensitive visual response.
Seliverstov A, Forster J, Heiland M, Unfried J, Streb C., Chem Commun (Camb) 50(58), 2014
PMID: 24910130
Electronic structure and soft-X-ray-induced photoreduction studies of iron-based magnetic polyoxometalates of type {(M)M5}12Fe(III)30 (M = Mo(VI), W(VI)).
Kuepper K, Derks C, Taubitz C, Prinz M, Joly L, Kappler JP, Postnikov A, Yang W, Kuznetsova TV, Wiedwald U, Ziemann P, Neumann M., Dalton Trans 42(22), 2013
PMID: 23403844
Perspectives in chemistry--steps towards complex matter.
Lehn JM., Angew Chem Int Ed Engl 52(10), 2013
PMID: 23420704
Palladium- or proton-induced submicro spherical aggregation of macrocyclic amphiphiles in aqueous solution.
Tashiro S, Kubota R, Kawagoe M, Shionoya M., Dalton Trans 42(45), 2013
PMID: 23995502
Assembly of trimeric polyoxovanadate aggregates based on [MnV13O38]7- building blocks and lanthanide cations.
Liu D, Lu Y, Li YG, Tan HQ, Chen WL, Zhang ZM, Wang EB., Dalton Trans 42(40), 2013
PMID: 23969412
Ionothermal synthesis of polyoxometalates.
Ahmed E, Ruck M., Angew Chem Int Ed Engl 51(2), 2012
PMID: 22121101
Real-time ion-flux imaging in the growth of micrometer-scale structures and membranes.
Nemeth B, Symes MD, Boulay AG, Busche C, Cooper GJ, Cumming DR, Cronin L., Adv Mater 24(9), 2012
PMID: 22290758
Assembly of a luminescent core-shell nanocluster featuring a Ag34S26 shell and a W6O21(6-) polyoxoanion core.
Zhou K, Qin C, Li HB, Yan LK, Wang XL, Shan GG, Su ZM, Xu C, Wang XL., Chem Commun (Camb) 48(47), 2012
PMID: 22572770
An ionothermal synthetic approach to porous polyoxometalate-based metal-organic frameworks.
Fu H, Qin C, Lu Y, Zhang ZM, Li YG, Su ZM, Li WL, Wang EB., Angew Chem Int Ed Engl 51(32), 2012
PMID: 22865560
Polyoxometalate-decorated nanoparticles.
Wang Y, Weinstock IA., Chem Soc Rev 41(22), 2012
PMID: 22814638
Directed assembly of inorganic polyoxometalate-based micrometer-scale tubular architectures by using optical control.
Cooper GJ, Bowman RW, Magennis EP, Fernandez-Trillo F, Alexander C, Padgett MJ, Cronin L., Angew Chem Int Ed Engl 51(51), 2012
PMID: 23161704
Reduced molybenum-oxide-based core-shell hybrids: "blue" electrons are delocalized on the shell.
Todea AM, Szakács J, Konar S, Bögge H, Crans DC, Glaser T, Rousselière H, Thouvenot R, Gouzerh P, Müller A., Chemistry 17(24), 2011
PMID: 21542032

25 References

Daten bereitgestellt von Europe PubMed Central.

Archimedean Synthesis and Magic Numbers: "Sizing" Giant Molybdenum-Oxide-Based Molecular Spheres of the Keplerate Type.
Muller A, Sarkar S, Shah SQ, Bogge H, Schmidtmann M, Kogerler P, Hauptfleisch B, Trautwein AX, Schunemann V V., Angew. Chem. Int. Ed. Engl. 38(21), 1999
PMID: 10556914
Extending the {(Mo)MO5}12M30 capsule keplerate sequence: a {Cr30} cluster of S=3/2 metal centers with a {Na(H2O)12} encapsulate.
Todea AM, Merca A, Bogge H, van Slageren J, Dressel M, Engelhardt L, Luban M, Glaser T, Henry M, Muller A., Angew. Chem. Int. Ed. Engl. 46(32), 2007
PMID: 17628480
Towards polyoxometalate-integrated nanosystems.
Long DL, Cronin L., Chemistry 12(14), 2006
PMID: 16416497

Proust, Chem. Commun. (Camb.) 2008(16), 2008

Hall, Chem. Commun. (Camb.) 2003(7), 2003

AUTHOR UNKNOWN, J Mater Chem 15(), 2005

AUTHOR UNKNOWN, J. Am. Chem. Soc. 126(), 2004

Kistler, Dalton Trans 26(26), 2009

AUTHOR UNKNOWN, Chem. Commun. (Camb.) 19(), 2001
Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles.
Liu T, Diemann E, Li H, Dress AW, Muller A., Nature 426(6962), 2003
PMID: 14603315
A Fourier method for the analysis of exponential decay curves.
Provencher SW., Biophys. J. 16(1), 1976
PMID: 1244888
Lag periods during the self-assembly of {Mo(72)Fe(30)} macroions: connection to the virus capsid formation process.
Zhang J, Li D, Liu G, Glover KJ, Liu T., J. Am. Chem. Soc. 131(42), 2009
PMID: 19795865

AUTHOR UNKNOWN, INORG CHIM ACTA 363(), 2010
A theoretical model successfully identifies features of hepatitis B virus capsid assembly.
Zlotnick A, Johnson JM, Wingfield PW, Stahl SJ, Endres D., Biochemistry 38(44), 1999
PMID: 10545189

AUTHOR UNKNOWN, Inorg Chem 24(), 1985

AUTHOR UNKNOWN, Z PHYS CHEM 223(), 2009

AUTHOR UNKNOWN, PHYS REV B 77(), 2008
Predicting a structured future.
Muller A., Nat Chem 1(1), 2009
PMID: 21378785
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21436449
PubMed | Europe PMC

Suchen in

Google Scholar