Competitive and cooperative effects in quorum-sensing-regulated galactoglucan biosynthesis in Sinorhizobium meliloti

McIntosh M, Krol E, Becker A (2008)
Journal of Bacteriology 190(15): 5308-5317.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
McIntosh, Matthew; Krol, Elizaveta; Becker, Anke
Abstract / Bemerkung
The symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti possesses the Sin quorum-sensing system based on N-acyl homoserine lactones (AHLs) as signal molecules. The Sin system consists of SinI, the AHL synthase, and SinR, the LuxR-type regulator. This system regulates the expression of a multitude of S. meliloti genes through ExpR, another LuxR-type regulator. Analysis of the activity of the sinI promoter showed that the expression of sinI is dependent on sinR and enhanced by a combination of expR and Sin AHLs. The characterization of the ExpR binding site upstream of sinI and the identification of binding sites upstream of the galactoglucan biosynthesis genes wgaA (expA1) and wgeA (expE1) allowed the definition of a consensus sequence for these binding sites. Based on this consensus, two additional ExpR binding sites in the promoter regions of exoI and exsH, two genes related to the production of succinoglycan, were found. The specific binding of ExpR to the wgaA and wgeA promoters was enhanced in the presence of oxo-C(14)-HL. Positive regulation of the galactoglucan biosynthesis genes by ExpR was shown to be dependent on WggR (ExpG) and influenced by MucR, both of which are previously characterized regulators of these genes. Based on these results, a reworked model of the Sin-ExpR quorum-sensing regulation scheme of galactoglucan production in S. meliloti is suggested.
Journal of Bacteriology
Page URI


McIntosh M, Krol E, Becker A. Competitive and cooperative effects in quorum-sensing-regulated galactoglucan biosynthesis in Sinorhizobium meliloti. Journal of Bacteriology. 2008;190(15):5308-5317.
McIntosh, M., Krol, E., & Becker, A. (2008). Competitive and cooperative effects in quorum-sensing-regulated galactoglucan biosynthesis in Sinorhizobium meliloti. Journal of Bacteriology, 190(15), 5308-5317.
McIntosh, M., Krol, E., and Becker, A. (2008). Competitive and cooperative effects in quorum-sensing-regulated galactoglucan biosynthesis in Sinorhizobium meliloti. Journal of Bacteriology 190, 5308-5317.
McIntosh, M., Krol, E., & Becker, A., 2008. Competitive and cooperative effects in quorum-sensing-regulated galactoglucan biosynthesis in Sinorhizobium meliloti. Journal of Bacteriology, 190(15), p 5308-5317.
M. McIntosh, E. Krol, and A. Becker, “Competitive and cooperative effects in quorum-sensing-regulated galactoglucan biosynthesis in Sinorhizobium meliloti”, Journal of Bacteriology, vol. 190, 2008, pp. 5308-5317.
McIntosh, M., Krol, E., Becker, A.: Competitive and cooperative effects in quorum-sensing-regulated galactoglucan biosynthesis in Sinorhizobium meliloti. Journal of Bacteriology. 190, 5308-5317 (2008).
McIntosh, Matthew, Krol, Elizaveta, and Becker, Anke. “Competitive and cooperative effects in quorum-sensing-regulated galactoglucan biosynthesis in Sinorhizobium meliloti”. Journal of Bacteriology 190.15 (2008): 5308-5317.

33 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Transcription attenuation-derived small RNA rnTrpL regulates tryptophan biosynthesis gene expression in trans.
Melior H, Li S, Madhugiri R, Stötzel M, Azarderakhsh S, Barth-Weber S, Baumgardt K, Ziebuhr J, Evguenieva-Hackenberg E., Nucleic Acids Res 47(12), 2019
PMID: 30993322
Regulation Mediated by N-Acyl Homoserine Lactone Quorum Sensing Signals in the Rhizobium-Legume Symbiosis.
Calatrava-Morales N, McIntosh M, Soto MJ., Genes (Basel) 9(5), 2018
PMID: 29783703
Front-propagation in bacterial inter-colony communication.
Bettenworth V, McIntosh M, Becker A, Eckhardt B., Chaos 28(10), 2018
PMID: 30384658
The stress-related, rhizobial small RNA RcsR1 destabilizes the autoinducer synthase encoding mRNA sinI in Sinorhizobium meliloti.
Baumgardt K, Šmídová K, Rahn H, Lochnit G, Robledo M, Evguenieva-Hackenberg E., RNA Biol 13(5), 2016
PMID: 26588798
Chemotaxis signaling systems in model beneficial plant-bacteria associations.
Scharf BE, Hynes MF, Alexandre GM., Plant Mol Biol 90(6), 2016
PMID: 26797793
A solo luxI-type gene directs acylhomoserine lactone synthesis and contributes to motility control in the marine sponge symbiont Ruegeria sp. KLH11.
Zan J, Choi O, Meharena H, Uhlson CL, Churchill ME, Hill RT, Fuqua C., Microbiology 161(pt 1), 2015
PMID: 25355937
Modulation of Sinorhizobium meliloti quorum sensing by Hfq-mediated post-transcriptional regulation of ExpR.
Gao M, Tang M, Guerich L, Salas-Gonzalez I, Teplitski M., Environ Microbiol Rep 7(1), 2015
PMID: 25382642
Classification of phenotypic subpopulations in isogenic bacterial cultures by triple promoter probing at single cell level.
Schlüter JP, Czuppon P, Schauer O, Pfaffelhuber P, McIntosh M, Becker A., J Biotechnol 198(), 2015
PMID: 25661839
VarR controls colonization and virulence in the marine macroalgal pathogen Nautella italica R11.
Gardiner M, Fernandes ND, Nowakowski D, Raftery M, Kjelleberg S, Zhong L, Thomas T, Egan S., Front Microbiol 6(), 2015
PMID: 26528274
RNase E affects the expression of the acyl-homoserine lactone synthase gene sinI in Sinorhizobium meliloti.
Baumgardt K, Charoenpanich P, McIntosh M, Schikora A, Stein E, Thalmann S, Kogel KH, Klug G, Becker A, Evguenieva-Hackenberg E., J Bacteriol 196(7), 2014
PMID: 24488310
Diverse genetic regulon of the virulence-associated transcriptional regulator MucR in Brucella abortus 2308.
Caswell CC, Elhassanny AE, Planchin EE, Roux CM, Weeks-Gorospe JN, Ficht TA, Dunman PM, Roop RM., Infect Immun 81(4), 2013
PMID: 23319565
Temporal expression program of quorum sensing-based transcription regulation in Sinorhizobium meliloti.
Charoenpanich P, Meyer S, Becker A, McIntosh M., J Bacteriol 195(14), 2013
PMID: 23687265
Coevolutionary genetic variation in the legume-rhizobium transcriptome.
Heath KD, Burke PV, Stinchcombe JR., Mol Ecol 21(19), 2012
PMID: 22672103
Quantitative proteomic analysis of the Hfq-regulon in Sinorhizobium meliloti 2011.
Sobrero P, Schlüter JP, Lanner U, Schlosser A, Becker A, Valverde C., PLoS One 7(10), 2012
PMID: 23119037
Co-ordination of quorum-sensing regulation in Rhizobium leguminosarum by induction of an anti-repressor.
Frederix M, Edwards A, McAnulla C, Downie JA., Mol Microbiol 81(4), 2011
PMID: 21732996
The cin and rai quorum-sensing regulatory systems in Rhizobium leguminosarum are coordinated by ExpR and CinS, a small regulatory protein coexpressed with CinI.
Edwards A, Frederix M, Wisniewski-Dyé F, Jones J, Zorreguieta A, Downie JA., J Bacteriol 191(9), 2009
PMID: 19270098
LuxR-family 'solos': bachelor sensors/regulators of signalling molecules.
Subramoni S, Venturi V., Microbiology 155(pt 5), 2009
PMID: 19383698
Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility.
Bahlawane C, McIntosh M, Krol E, Becker A., Mol Plant Microbe Interact 21(11), 2008
PMID: 18842098

52 References

Daten bereitgestellt von Europe PubMed Central.

Effector-stimulated single molecule protein-DNA interactions of a quorum-sensing system in Sinorhizobium meliloti.
Bartels FW, McIntosh M, Fuhrmann A, Metzendorf C, Plattner P, Sewald N, Anselmetti D, Ros R, Becker A., Biophys. J. 92(12), 2007
PMID: 17384071
Detailed studies of the binding mechanism of the Sinorhizobium meliloti transcriptional activator ExpG to DNA.
Baumgarth B, Bartels FW, Anselmetti D, Becker A, Ros R., Microbiology (Reading, Engl.) 151(Pt 1), 2005
PMID: 15632443
The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: genetic organization and properties of the encoded gene products.
Becker A, Ruberg S, Kuster H, Roxlau AA, Keller M, Ivashina T, Cheng HP, Walker GC, Puhler A., J. Bacteriol. 179(4), 1997
PMID: 9023225
R factor transfer in Rhizobium leguminosarum.
Beringer JE., J. Gen. Microbiol. 84(1), 1974
PMID: 4612098

Quorum sensing in Vibrio fischeri: elements of the luxl promoter.
Egland KA, Greenberg EP., Mol. Microbiol. 31(4), 1999
PMID: 10096086
Tandem DNA recognition by PhoB, a two-component signal transduction transcriptional activator.
Blanco AG, Sola M, Gomis-Ruth FX, Coll M., Structure 10(5), 2002
PMID: 12015152
Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing.
Fuqua C, Parsek MR, Greenberg EP., Annu. Rev. Genet. 35(), 2001
PMID: 11700290
The composite genome of the legume symbiont Sinorhizobium meliloti.
Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J., Science 293(5530), 2001
PMID: 11474104
sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti.
Gao M, Chen H, Eberhard A, Gronquist MR, Robinson JB, Rolfe BG, Bauer WD., J. Bacteriol. 187(23), 2005
PMID: 16291666
The ExpR/Sin quorum-sensing system controls succinoglycan production in Sinorhizobium meliloti.
Glenn SA, Gurich N, Feeney MA, Gonzalez JE., J. Bacteriol. 189(19), 2007
PMID: 17644606
Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago sativa.
Gonzalez JE, Reuhs BL, Walker GC., Proc. Natl. Acad. Sci. U.S.A. 93(16), 1996
PMID: 8710923
Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants.
Grant SG, Jessee J, Bloom FR, Hanahan D., Proc. Natl. Acad. Sci. U.S.A. 87(12), 1990
PMID: 2162051
Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction.
Horton RM, Cai ZL, Ho SN, Pease LR., BioTechniques 8(5), 1990
PMID: 2357375
Expression of regulatory nif genes in Rhodobacter capsulatus.
Hubner P, Willison JC, Vignais PM, Bickle TA., J. Bacteriol. 173(9), 1991
PMID: 1902215
Molecular analysis of the Rhizobium meliloti mucR gene regulating the biosynthesis of the exopolysaccharides succinoglycan and galactoglucan.
Keller M, Roxlau A, Weng WM, Schmidt M, Quandt J, Niehaus K, Jording D, Arnold W, Puhler A., Mol. Plant Microbe Interact. 8(2), 1995
PMID: 7756693
Exopolysaccharides of Rhizobium: synthesis, regulation and symbiotic function.
Leigh JA, Walker GC., Trends Genet. 10(2), 1994
PMID: 8191588
Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules.
Leigh JA, Signer ER, Walker GC., Proc. Natl. Acad. Sci. U.S.A. 82(18), 1985
PMID: 3862129
Use of Sinorhizobium meliloti as an indicator for specific detection of long-chain N-acyl homoserine lactones.
Llamas I, Keshavan N, Gonzalez JE., Appl. Environ. Microbiol. 70(6), 2004
PMID: 15184178
Identification of two quorum-sensing systems in Sinorhizobium meliloti.
Marketon MM, Gonzalez JE., J. Bacteriol. 184(13), 2002
PMID: 12057940
Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti.
Marketon MM, Glenn SA, Eberhard A, Gonzalez JE., J. Bacteriol. 185(1), 2003
PMID: 12486070
Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones.
Marketon MM, Gronquist MR, Eberhard A, Gonzalez JE., J. Bacteriol. 184(20), 2002
PMID: 12270827
Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti.
Mendrygal KE, Gonzalez JE., J. Bacteriol. 182(3), 2000
PMID: 10633091

Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides.
Pellock BJ, Cheng HP, Walker GC., J. Bacteriol. 182(15), 2000
PMID: 10894742
A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti.
Pellock BJ, Teplitski M, Boinay RP, Bauer WD, Walker GC., J. Bacteriol. 184(18), 2002
PMID: 12193623
Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of Sinorhizobium meliloti.
Pobigaylo N, Wetter D, Szymczak S, Schiller U, Kurtz S, Meyer F, Nattkemper TW, Becker A., Appl. Environ. Microbiol. 72(6), 2006
PMID: 16751548
Quorum-sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm.
Qin Y, Luo ZQ, Smyth AJ, Gao P, Beck von Bodman S, Farrand SK., EMBO J. 19(19), 2000
PMID: 11013223

Reversible acyl-homoserine lactone binding to purified Vibrio fischeri LuxR protein.
Urbanowski ML, Lostroh CP, Greenberg EP., J. Bacteriol. 186(3), 2004
PMID: 14729687
Exogenous suppression of the symbiotic deficiencies of Rhizobium meliloti exo mutants.
Urzainqui A, Walker GC., J. Bacteriol. 174(10), 1992
PMID: 1577707
Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria.
Yuan ZC, Zaheer R, Morton R, Finan TM., Nucleic Acids Res. 34(9), 2006
PMID: 16717279


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 18515420
PubMed | Europe PMC

Suchen in

Google Scholar