Binocular Integration of Visual Information: A Model Study on Naturalistic Optic Flow Processing.

Hennig P, Kern R, Egelhaaf M (2011)
Frontiers in Neural Circuits 5: 4.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
The computation of visual information from both visual hemispheres is often of functional relevance when solving orientation and navigation tasks. The vCH-cell is a motion-sensitive wide-field neuron in the visual system of the blowfly Calliphora, a model system in the field of optic flow processing. The vCH-cell receives input from various other identified wide-field cells, the receptive fields of which are located in both the ipsilateral and the contralateral visual field. The relevance of this connectivity to the processing of naturalistic image sequences, with their peculiar dynamical characteristics, is still unresolved. To disentangle the contributions of the different input components to the cell?s overall response, we used electrophysiologically determined responses of the vCH-cell and its various input elements to tune a model of the vCH-circuit. Their impact on the vCH-cell response could be distinguished by stimulating not only extended parts of the visual field of the fly, but also selected regions in the ipsi- and contralateral visual field with behaviorally generated optic flow. We show that a computational model of the vCH-circuit is able to account for the neuronal activities of the counterparts in the blowfly?s visual system. Furthermore, we offer an insight into the dendritic integration of binocular visual input.
Erscheinungsjahr
2011
Zeitschriftentitel
Frontiers in Neural Circuits
Band
5
Seite(n)
4
ISSN
1662-5110
eISSN
1662-5110
Page URI
https://pub.uni-bielefeld.de/record/2046975

Zitieren

Hennig P, Kern R, Egelhaaf M. Binocular Integration of Visual Information: A Model Study on Naturalistic Optic Flow Processing. Frontiers in Neural Circuits. 2011;5:4.
Hennig, P., Kern, R., & Egelhaaf, M. (2011). Binocular Integration of Visual Information: A Model Study on Naturalistic Optic Flow Processing. Frontiers in Neural Circuits, 5, 4. https://doi.org/10.3389/fncir.2011.00004
Hennig, Patrick, Kern, Roland, and Egelhaaf, Martin. 2011. “Binocular Integration of Visual Information: A Model Study on Naturalistic Optic Flow Processing.”. Frontiers in Neural Circuits 5: 4.
Hennig, P., Kern, R., and Egelhaaf, M. (2011). Binocular Integration of Visual Information: A Model Study on Naturalistic Optic Flow Processing. Frontiers in Neural Circuits 5, 4.
Hennig, P., Kern, R., & Egelhaaf, M., 2011. Binocular Integration of Visual Information: A Model Study on Naturalistic Optic Flow Processing. Frontiers in Neural Circuits, 5, p 4.
P. Hennig, R. Kern, and M. Egelhaaf, “Binocular Integration of Visual Information: A Model Study on Naturalistic Optic Flow Processing.”, Frontiers in Neural Circuits, vol. 5, 2011, pp. 4.
Hennig, P., Kern, R., Egelhaaf, M.: Binocular Integration of Visual Information: A Model Study on Naturalistic Optic Flow Processing. Frontiers in Neural Circuits. 5, 4 (2011).
Hennig, Patrick, Kern, Roland, and Egelhaaf, Martin. “Binocular Integration of Visual Information: A Model Study on Naturalistic Optic Flow Processing.”. Frontiers in Neural Circuits 5 (2011): 4.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:30Z
MD5 Prüfsumme
e6d5ba7b12469ce1bb4931a5450d2ee9


13 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Binocular Neuronal Processing of Object Motion in an Arthropod.
Scarano F, Sztarker J, Medan V, Berón de Astrada M, Tomsic D., J Neurosci 38(31), 2018
PMID: 30012687
Self-motion perception in the elderly.
Lich M, Bremmer F., Front Hum Neurosci 8(), 2014
PMID: 25309379
Texture dependence of motion sensing and free flight behavior in blowflies.
Lindemann JP, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 23335890
Binocular interactions underlying the classic optomotor responses of flying flies.
Duistermars BJ, Care RA, Frye MA., Front Behav Neurosci 6(), 2012
PMID: 22375108
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913

61 References

Daten bereitgestellt von Europe PubMed Central.

Local and large-range inhibition in feature detection.
Bolzon DM, Nordstrom K, O'Carroll DC., J. Neurosci. 29(45), 2009
PMID: 19906963
Fly motion vision.
Borst A, Haag J, Reiff DF., Annu. Rev. Neurosci. 33(), 2010
PMID: 20225934
Adaptation of response transients in fly motion vision. II: Model studies.
Borst A, Reisenman C, Haag J., Vision Res. 43(11), 2003
PMID: 12726836
Identifying prototypical components in behaviour using clustering algorithms.
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
Robust models for optic flow coding in natural scenes inspired by insect biology.
Brinkworth RS, O'Carroll DC., PLoS Comput. Biol. 5(11), 2009
PMID: 19893631
Visual control of flight behaviour in the hoverfly Syritta pipiens L
Collett T., Land M.., 1975
Neural image processing by dendritic networks.
Cuntz H, Haag J, Borst A., Proc. Natl. Acad. Sci. U.S.A. 100(19), 2003
PMID: 12947039
“Real-time encoding of motion: answerable questions and questionable answers from the fly's visual system,”
de R., Borst A., Bialek W.., 2001
The centrifugal horizontal cells in the lobula plate of the blowfly, Phaenicia sericata
Eckert H., Dvorak D.., 1983
On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-detection cells a new class of visual interneurones
Egelhaaf M.., 1985
“The neural computation of visual motion information,”
Egelhaaf M.., 2006
“Fly: processing of visual motion information and its role in visual orientation,”
Egelhaaf M., Kern R., Kurtz R., Warzecha A.-K.., 2004

Exner S., Hardie R.., 1989
Input organization of multifunctional motion-sensitive neurons in the blowfly.
Farrow K, Haag J, Borst A., J. Neurosci. 23(30), 2003
PMID: 14586008
“Sampling of the visual environment by the compound eye of the fly: fundamentals and applications,”
Franceschini N.., 1975
Synapse distribution on VCH, an inhibitory, motion-sensitive interneuron in the fly visual system.
Gauck V, Egelhaaf M, Borst A., J. Comp. Neurol. 381(4), 1997
PMID: 9136805

Gibson J.., 1950
Orientation tuning of motion-sensitive neurons shaped by vertical-horizontal network interactions
Haag J., Borst A.., 2003
Monocular and binocular computation of motion in the lobula plate of the fly
Hausen K.., 1981
Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals
Hausen K.., 1982
Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics
Hausen K.., 1982
“The lobula-complex of the fly: structure, function and significance in visual behaviour,”
Hausen K.., 1984
Synaptic interactions increase optic flow specificity.
Horstmann W, Egelhaaf M, Warzecha AK., Eur. J. Neurosci. 12(6), 2000
PMID: 10886355
Wide-field motion-sensitive neurons tuned to horizontal movement in the honeybee, Apis mellifera
Ibbotson M.., 1991
A place theory of sound localization.
JEFFRESS LA., J Comp Physiol Psychol 41(1), 1948
PMID: 18904764
A matter of time: internal delays in binaural processing.
Joris P, Yin TC., Trends Neurosci. 30(2), 2006
PMID: 17188761
Nonlinear models of the first synapse in the light-adapted fly retina.
Juusola M, Weckstrom M, Uusitalo RO, Korenberg MJ, French AS., J. Neurophysiol. 74(6), 1995
PMID: 8747212
Detection of object motion by a fly neuron during simulated flight.
Kimmerle B, Egelhaaf M., J. Comp. Physiol. A 186(1), 2000
PMID: 10659039
Performance of fly visual interneurons during object fixation.
Kimmerle B, Egelhaaf M., J. Neurosci. 20(16), 2000
PMID: 10934276
Object detection in the fly during simulated translatory flight
Kimmerle B., Warzecha A., Egelhaaf M.., 1997
Study of sound localization by owls and its relevance to humans.
Konishi M., Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 126(4), 2000
PMID: 10989338
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
Visual acuity in insects.
Land MF., Annu. Rev. Entomol. 42(), 1997
PMID: 15012311
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604
On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway.
Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M., J. Neurosci. 25(27), 2005
PMID: 16000634
Arrangement of optical axes and spatial resolution in the compound eye of the female blowfly Calliphora.
Petrowitz R, Dahmen H, Egelhaaf M, Krapp HG., J. Comp. Physiol. A 186(7-8), 2000
PMID: 11016789
“An introduction to differential evolution,”
Price K.., 1999
Stabilizing gaze in flying blowflies.
Schilstra C, van Hateren JH., Nature 395(6703), 1998
PMID: 9790186
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
The accessory optic system.
Simpson JI., Annu. Rev. Neurosci. 7(), 1984
PMID: 6370078
Coding efficiency of fly motion processing is set by firing rate, not firing precision.
Spavieri DL Jr, Eichner H, Borst A., PLoS Comput. Biol. 6(7), 2010
PMID: 20661305
Function and coding in the blowfly H1 neuron during naturalistic optic flow.
van Hateren JH, Kern R, Schwerdtfeger G, Egelhaaf M., J. Neurosci. 25(17), 2005
PMID: 15858060
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Flight performance and visual control of flight of the free-flying housefly (Musca domestica). I. Organization of the flight motor
Wagner H.., 1986
“Neuronal encoding of visual motion in real-time,”
Warzecha A., Egelhaaf M.., 2001
Temporal precision of the encoding of motion information by visual interneurons.
Warzecha AK, Kretzberg J, Egelhaaf M., Curr. Biol. 8(7), 1998
PMID: 9545194
Reliability of a fly motion-sensitive neuron depends on stimulus parameters.
Warzecha AK, Kretzberg J, Egelhaaf M., J. Neurosci. 20(23), 2000
PMID: 11102498
Performance of a bio-inspired model for the robust detection of moving targets in high dynamic range natural scenes
Wiederman S., Brinkworth R., O'Carroll D.., 2010
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21519385
PubMed | Europe PMC

Suchen in

Google Scholar