Biotechnological Production of Polyamines by Bacteria: Recent Achievements and Future Perspectives

Schneider J, Wendisch VF (2011)
Applied Microbiology and Biotechnology 91(1): 17-30.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Erscheinungsjahr
2011
Zeitschriftentitel
Applied Microbiology and Biotechnology
Band
91
Ausgabe
1
Seite(n)
17-30
ISSN
0175-7598
eISSN
1432-0614
Page URI
https://pub.uni-bielefeld.de/record/2017884

Zitieren

Schneider J, Wendisch VF. Biotechnological Production of Polyamines by Bacteria: Recent Achievements and Future Perspectives. Applied Microbiology and Biotechnology. 2011;91(1):17-30.
Schneider, J., & Wendisch, V. F. (2011). Biotechnological Production of Polyamines by Bacteria: Recent Achievements and Future Perspectives. Applied Microbiology and Biotechnology, 91(1), 17-30. https://doi.org/10.1007/s00253-011-3252-0
Schneider, Jens, and Wendisch, Volker F. 2011. “Biotechnological Production of Polyamines by Bacteria: Recent Achievements and Future Perspectives”. Applied Microbiology and Biotechnology 91 (1): 17-30.
Schneider, J., and Wendisch, V. F. (2011). Biotechnological Production of Polyamines by Bacteria: Recent Achievements and Future Perspectives. Applied Microbiology and Biotechnology 91, 17-30.
Schneider, J., & Wendisch, V.F., 2011. Biotechnological Production of Polyamines by Bacteria: Recent Achievements and Future Perspectives. Applied Microbiology and Biotechnology, 91(1), p 17-30.
J. Schneider and V.F. Wendisch, “Biotechnological Production of Polyamines by Bacteria: Recent Achievements and Future Perspectives”, Applied Microbiology and Biotechnology, vol. 91, 2011, pp. 17-30.
Schneider, J., Wendisch, V.F.: Biotechnological Production of Polyamines by Bacteria: Recent Achievements and Future Perspectives. Applied Microbiology and Biotechnology. 91, 17-30 (2011).
Schneider, Jens, and Wendisch, Volker F. “Biotechnological Production of Polyamines by Bacteria: Recent Achievements and Future Perspectives”. Applied Microbiology and Biotechnology 91.1 (2011): 17-30.

44 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

High-Level Conversion of l-lysine into Cadaverine by Escherichia coli Whole Cell Biocatalyst Expressing Hafnia alvei l-lysine Decarboxylase.
Kim HT, Baritugo KA, Oh YH, Kang KH, Jung YJ, Jang S, Song BK, Kim IK, Lee MO, Hwang YT, Park K, Park SJ, Joo JC., Polymers (Basel) 11(7), 2019
PMID: 31337154
Enzymatic Cascade Reactions for the Synthesis of Chiral Amino Alcohols from L-lysine.
Fossey-Jouenne A, Vergne-Vaxelaire C, Zaparucha A., J Vis Exp (132), 2018
PMID: 29553559
Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives.
Wendisch VF, Mindt M, Pérez-García F., Appl Microbiol Biotechnol 102(8), 2018
PMID: 29520601
The RamA regulon: complex regulatory interactions in relation to central metabolism in Corynebacterium glutamicum.
Shah A, Blombach B, Gauttam R, Eikmanns BJ., Appl Microbiol Biotechnol 102(14), 2018
PMID: 29804137
A Novel Process for Cadaverine Bio-Production Using a Consortium of Two Engineered Escherichia coli.
Wang J, Lu X, Ying H, Ma W, Xu S, Wang X, Chen K, Ouyang P., Front Microbiol 9(), 2018
PMID: 29971056
Enhancing catalytic stability and cadaverine tolerance by whole-cell immobilization and the addition of cell protectant during cadaverine production.
Wei G, Ma W, Zhang A, Cao X, Shen J, Li Y, Chen K, Ouyang P., Appl Microbiol Biotechnol 102(18), 2018
PMID: 29998412
The fly factor phenomenon is mediated by interkingdom signaling between bacterial symbionts and their blow fly hosts.
Uriel Y, Gries R, Tu L, Carroll C, Zhai H, Moore M, Gries G., Insect Sci (), 2018
PMID: 30047567
Putrescine biosynthesis and export genes are essential for normal growth of avian pathogenic Escherichia coli.
Guerra PR, Herrero-Fresno A, Ladero V, Redruello B, Dos Santos TP, Spiegelhauer MR, Jelsbak L, Olsen JE., BMC Microbiol 18(1), 2018
PMID: 30587122
Engineering cell factories for producing building block chemicals for bio-polymer synthesis.
Tsuge Y, Kawaguchi H, Sasaki K, Kondo A., Microb Cell Fact 15(), 2016
PMID: 26794242
Crystal Structure and Pyridoxal 5-Phosphate Binding Property of Lysine Decarboxylase from Selenomonas ruminantium.
Sagong HY, Son HF, Kim S, Kim YH, Kim IK, Kim KJ., PLoS One 11(11), 2016
PMID: 27861532
Production of 2-ketoisocaproate with Corynebacterium glutamicum strains devoid of plasmids and heterologous genes.
Vogt M, Haas S, Polen T, van Ooyen J, Bott M., Microb Biotechnol 8(2), 2015
PMID: 25488800
Enhanced cadaverine production from L-lysine using recombinant Escherichia coli co-overexpressing CadA and CadB.
Ma W, Cao W, Zhang H, Chen K, Li Y, Ouyang P., Biotechnol Lett 37(4), 2015
PMID: 25515797
Metabolic engineering of Corynebacterium glutamicum for methanol metabolism.
Witthoff S, Schmitz K, Niedenführ S, Nöh K, Noack S, Bott M, Marienhagen J., Appl Environ Microbiol 81(6), 2015
PMID: 25595770
Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains.
Naerdal I, Pfeifenschneider J, Brautaset T, Wendisch VF., Microb Biotechnol 8(2), 2015
PMID: 25644214
Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation.
Michel A, Koch-Koerfges A, Krumbach K, Brocker M, Bott M., Appl Environ Microbiol 81(21), 2015
PMID: 26276118
Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.
Leßmeier L, Pfeifenschneider J, Carnicer M, Heux S, Portais JC, Wendisch VF., Appl Microbiol Biotechnol 99(23), 2015
PMID: 26276544
Development of engineered Escherichia coli whole-cell biocatalysts for high-level conversion of L-lysine into cadaverine.
Oh YH, Kang KH, Kwon MJ, Choi JW, Joo JC, Lee SH, Yang YH, Song BK, Kim IK, Yoon KH, Park K, Park SJ., J Ind Microbiol Biotechnol 42(11), 2015
PMID: 26364199
Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production.
Bückle-Vallant V, Krause FS, Messerschmidt S, Eikmanns BJ., Appl Microbiol Biotechnol 98(1), 2014
PMID: 24169948
Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction.
Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, Bott M., Metab Eng 22(), 2014
PMID: 24333966
Identification of low-molecular-weight compounds inhibiting growth of corynebacteria: potential lead compounds for antibiotics.
Stark JL, Copeland JC, Eletsky A, Somerville GA, Szyperski T, Powers R., ChemMedChem 9(2), 2014
PMID: 24403054
Improving the secretion of cadaverine in Corynebacterium glutamicum by cadaverine-lysine antiporter.
Li M, Li D, Huang Y, Liu M, Wang H, Tang Q, Lu F., J Ind Microbiol Biotechnol 41(4), 2014
PMID: 24510022
Redox self-sufficient whole cell biotransformation for amination of alcohols.
Klatte S, Wendisch VF., Bioorg Med Chem 22(20), 2014
PMID: 24894767
Polyamine transporters and polyamines increase furfural tolerance during xylose fermentation with ethanologenic Escherichia coli strain LY180.
Geddes RD, Wang X, Yomano LP, Miller EN, Zheng H, Shanmugam KT, Ingram LO., Appl Environ Microbiol 80(19), 2014
PMID: 25063650
Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.
Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Krämer R, Wendisch VF, Seibold GM, Marin K., Appl Microbiol Biotechnol 97(4), 2013
PMID: 22854894
Bio-based production of organic acids with Corynebacterium glutamicum.
Wieschalka S, Blombach B, Bott M, Eikmanns BJ., Microb Biotechnol 6(2), 2013
PMID: 23199277
Proteome response of Corynebacterium glutamicum to high concentration of industrially relevant C₄ and C₅ dicarboxylic acids.
Vasco-Cárdenas MF, Baños S, Ramos A, Martín JF, Barreiro C., J Proteomics 85(), 2013
PMID: 23624027
C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide.
Witthoff S, Mühlroth A, Marienhagen J, Bott M., Appl Environ Microbiol 79(22), 2013
PMID: 24014532
Engineering Corynebacterium glutamicum for the production of pyruvate.
Wieschalka S, Blombach B, Eikmanns BJ., Appl Microbiol Biotechnol 94(2), 2012
PMID: 22228312
An in silico platform for the design of heterologous pathways in nonnative metabolite production.
Chatsurachai S, Furusawa C, Shimizu H., BMC Bioinformatics 13(), 2012
PMID: 22578364

98 References

Daten bereitgestellt von Europe PubMed Central.

Comparison of the biosynthetic and biodegradative ornithine decarboxylases of Escherichia coli.
Applebaum DM, Dunlap JC, Morris DR., Biochemistry 16(8), 1977
PMID: 15587
Spermidine oxidase from Serratia marcescens.
BACHRACH U., J. Biol. Chem. 237(), 1962
PMID: 13965926
Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum.
Bellmann A, Vrljic M, Patek M, Sahm H, Kramer R, Eggeling L., Microbiology (Reading, Engl.) 147(Pt 7), 2001
PMID: 11429454
The first agmatine/cadaverine aminopropyl transferase: biochemical and structural characterization of an enzyme involved in polyamine biosynthesis in the hyperthermophilic archaeon Pyrococcus furiosus.
Cacciapuoti G, Porcelli M, Moretti MA, Sorrentino F, Concilio L, Zappia V, Liu ZJ, Tempel W, Schubot F, Rose JP, Wang BC, Brereton PS, Jenney FE, Adams MW., J. Bacteriol. 189(16), 2007
PMID: 17545282
Transport of diamines by Enterococcus faecalis is mediated by an agmatine-putrescine antiporter.
Driessen AJ, Smid EJ, Konings WN., J. Bacteriol. 170(10), 1988
PMID: 3139630

AUTHOR UNKNOWN, 0
Effect of polyamines and synthetic polyamine-analogues on the expression of antizyme (AtoC) and its regulatory genes.
Filippou PS, Lioliou EE, Panagiotidis CA, Athanassopoulos CM, Garnelis T, Papaioannou D, Kyriakidis DA., BMC Biochem. 8(), 2007
PMID: 17224065
Escherichia coli acid resistance: tales of an amateur acidophile.
Foster JW., Nat. Rev. Microbiol. 2(11), 2004
PMID: 15494746
Catabolism of L-lysine by Pseudomonas aeruginosa.
Fothergill JC, Guest JR., J. Gen. Microbiol. 99(1), 1977
PMID: 405455

N, 2007
Polyamines as a chemotaxonomic marker in bacterial systematics.
Hamana K, Matsuzaki S., Crit. Rev. Microbiol. 18(4), 1992
PMID: 1524675
Identification of a spermidine excretion protein complex (MdtJI) in Escherichia coli.
Higashi K, Ishigure H, Demizu R, Uemura T, Nishino K, Yamaguchi A, Kashiwagi K, Igarashi K., J. Bacteriol. 190(3), 2007
PMID: 18039771

T, J Ferment Bioeng 69(), 1990
Characteristics of cellular polyamine transport in prokaryotes and eukaryotes.
Igarashi K, Kashiwagi K., Plant Physiol. Biochem. 48(7), 2010
PMID: 20159658
Excretion of putrescine by the putrescine-ornithine antiporter encoded by the potE gene of Escherichia coli.
Kashiwagi K, Miyamoto S, Suzuki F, Kobayashi H, Igarashi K., Proc. Natl. Acad. Sci. U.S.A. 89(10), 1992
PMID: 1584788
Excretion and uptake of putrescine by the PotE protein in Escherichia coli.
Kashiwagi K, Shibuya S, Tomitori H, Kuraishi A, Igarashi K., J. Biol. Chem. 272(10), 1997
PMID: 9045651
Characterization of a second lysine decarboxylase isolated from Escherichia coli.
Kikuchi Y, Kojima H, Tanaka T, Takatsuka Y, Kamio Y., J. Bacteriol. 179(14), 1997
PMID: 9226257

JI, 2004

AUTHOR UNKNOWN, 0
gamma-Glutamylputrescine synthetase in the putrescine utilization pathway of Escherichia coli K-12.
Kurihara S, Oda S, Tsuboi Y, Kim HG, Oshida M, Kumagai H, Suzuki H., J. Biol. Chem. 283(29), 2008
PMID: 18495664
The putrescine Importer PuuP of Escherichia coli K-12.
Kurihara S, Tsuboi Y, Oda S, Kim HG, Kumagai H, Suzuki H., J. Bacteriol. 191(8), 2009
PMID: 19181795
A novel putrescine utilization pathway involves gamma-glutamylated intermediates of Escherichia coli K-12.
Kurihara S, Oda S, Kato K, Kim HG, Koyanagi T, Kumagai H, Suzuki H., J. Biol. Chem. 280(6), 2004
PMID: 15590624
An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae.
Lee J, Sperandio V, Frantz DE, Longgood J, Camilli A, Phillips MA, Michael AJ., J. Biol. Chem. 284(15), 2009
PMID: 19196710
Systems metabolic engineering of Escherichia coli for L-threonine production.
Lee KH, Park JH, Kim TY, Kim HU, Lee SY., Mol. Syst. Biol. 3(), 2007
PMID: 18059444
The dual genetic control of ornithine carbamolytransferase in Escherichia coli. A case of bacterial hybrid enzymes.
Legrain C, Halleux P, Stalon V, Glansdorff N., Eur. J. Biochem. 27(1), 1972
PMID: 4558857
Occurrence and induction of spermidine-N1-acetyltransferase in Escherichia coli.
Matsui I, Kamei M, Otani S, Morisawa S, Pegg AE., Biochem. Biophys. Res. Commun. 106(4), 1982
PMID: 7052085
Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation.
Mimitsuka T, Sawai H, Hatsu M, Yamada K., Biosci. Biotechnol. Biochem. 71(9), 2007
PMID: 17895539
Estimation of polyamine distribution and polyamine stimulation of protein synthesis in Escherichia coli.
Miyamoto S, Kashiwagi K, Ito K, Watanabe S, Igarashi K., Arch. Biochem. Biophys. 300(1), 1993
PMID: 7678729
Dual biosynthesis pathway for longer-chain polyamines in the hyperthermophilic archaeon Thermococcus kodakarensis.
Morimoto N, Fukuda W, Nakajima N, Masuda T, Terui Y, Kanai T, Oshima T, Imanaka T, Fujiwara S., J. Bacteriol. 192(19), 2010
PMID: 20675472

H, Microbiology 136(), 1990

AUTHOR UNKNOWN, 0
N1-aminopropylagmatine, a new polyamine produced as a key intermediate in polyamine biosynthesis of an extreme thermophile, Thermus thermophilus.
Ohnuma M, Terui Y, Tamakoshi M, Mitome H, Niitsu M, Samejima K, Kawashima E, Oshima T., J. Biol. Chem. 280(34), 2005
PMID: 15983049
Polyamines are essential for the formation of plague biofilm.
Patel CN, Wortham BW, Lines JL, Fetherston JD, Perry RD, Oliveira MA., J. Bacteriol. 188(7), 2006
PMID: 16547021

L, FEMS Microbiol Lett 19(), 1983
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene.
Peters-Wendisch PG, Kreutzer C, Kalinowski J, Patek M, Sahm H, Eikmanns BJ., Microbiology (Reading, Engl.) 144 ( Pt 4)(), 1998
PMID: 9579065
Characteristics of the operon for a putrescine transport system that maps at 19 minutes on the Escherichia coli chromosome.
Pistocchi R, Kashiwagi K, Miyamoto S, Nukui E, Sadakata Y, Kobayashi H, Igarashi K., J. Biol. Chem. 268(1), 1993
PMID: 8416922

DK, 2003
Multiple and interconnected pathways for L-lysine catabolism in Pseudomonas putida KT2440.
Revelles O, Espinosa-Urgel M, Fuhrer T, Sauer U, Ramos JL., J. Bacteriol. 187(21), 2005
PMID: 16237033
Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production.
Riedel C, Rittmann D, Dangel P, Mockel B, Petersen S, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(4), 2001
PMID: 11565516
Basic amino acid transport in Escherichia coli.
Rosen BP., J. Biol. Chem. 246(11), 1971
PMID: 4931309
Purification and physical properties of inducible Escherichia coli lysine decarboxylase.
Sabo DL, Boeker EA, Byers B, Waron H, Fischer EH., Biochemistry 13(4), 1974
PMID: 4590109
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 88(4), 2010
PMID: 20661733
Molecular analysis of the Corynebacterium glutamicum lysl gene involved in lysine uptake.
Seep-Feldhaus AH, Kalinowski J, Puhler A., Mol. Microbiol. 5(12), 1991
PMID: 1667221
Catabolism of polyamines.
Seiler N., Amino Acids 26(3), 2004
PMID: 15221502

N, Digestion 46(), 1990
The methionine salvage pathway in Bacillus subtilis.
Sekowska A, Danchin A., BMC Microbiol. 2(), 2002
PMID: 12022921

H, 2007
Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli.
Soksawatmaekhin W, Kuraishi A, Sakata K, Kashiwagi K, Igarashi K., Mol. Microbiol. 51(5), 2004
PMID: 14982633
The lysP gene encodes the lysine-specific permease.
Steffes C, Ellis J, Wu J, Rosen BP., J. Bacteriol. 174(10), 1992
PMID: 1315732
Corynebacterium glutamicum as a host for synthesis and export of D-Amino Acids.
Stabler N, Oikawa T, Bott M, Eggeling L., J. Bacteriol. 193(7), 2011
PMID: 21257776

O, Biochim Biophys Acta Gen Subj 882(), 1986
Polyamines in microorganisms.
Tabor CW, Tabor H., Microbiol. Rev. 49(1), 1985
PMID: 3157043
A new pathway for the biosynthesis of spermidine.
Tait GH., Biochem. Soc. Trans. 4(4), 1976
PMID: 1087258
Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase.
Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A., Appl. Microbiol. Biotechnol. 82(1), 2008
PMID: 18989633
Discovery and characterization of a putrescine oxidase from Rhodococcus erythropolis NCIMB 11540.
van Hellemond EW, van Dijk M, Heuts DP, Janssen DB, Fraaije MW., Appl. Microbiol. Biotechnol. 78(3), 2008
PMID: 18183391

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
The LysE superfamily: topology of the lysine exporter LysE of Corynebacterium glutamicum, a paradyme for a novel superfamily of transmembrane solute translocators.
Vrljic M, Garg J, Bellmann A, Wachi S, Freudl R, Malecki MJ, Sahm H, Kozina VJ, Eggeling L, Saier MH Jr, Eggeling L, Saier MH Jr., J. Mol. Microbiol. Biotechnol. 1(2), 1999
PMID: 10943564
A perspective of polyamine metabolism.
Wallace HM, Fraser AV, Hughes A., Biochem. J. 376(Pt 1), 2003
PMID: 13678416
Structure and properties of the putrescine carbamoyltransferase of Streptococcus faecalis.
Wargnies B, Lauwers N, Stalon V., Eur. J. Biochem. 101(1), 1979
PMID: 116850

C, 2007
Evidence for the presence of a novel biosynthetic pathway for norspermidine in Vibrio.
Yamamoto S, Hamanaka K, Suemoto Y, Ono B, Shinoda S., Can. J. Microbiol. 32(2), 1986
PMID: 3697846
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21552989
PubMed | Europe PMC

Suchen in

Google Scholar