How to design magneto-based total analysis systems for biomedical applications

Weddemann A, Albon C, Auge A, Wittbracht F, Hedwig P, Akemeier D, Rott K, Meissner D, Jutzi P, Huetten A (2010)
In: Biosensors and Bioelectronics. Biosensors and Bioelectronics, 26(4). Elsevier: 1152-1163.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
This article reviews recent developments on magnetoresistive detection of magnetic beads or nanopartides by nanoscale sized sensors. Sensors are analyzed from an experimental and a numerical point of view in respect to their capability to either localize the position of a single magnetic particle or to detect the number of particles in a certain range. Guidelines are shown up on how to extend single sensors to sensor arrays with very high spatial resolution and how to modify the sensor shape in order to provide long distance measurements. Further, sensors in biological lab-on-a-chip environments are discussed. The magnetic ratchet and a gravitation based microfluidic component are reviewed as important tools to position and, therefore, detect biological components in continuous-flow devices. (C) 2010 Elsevier B.V. All rights reserved.
Stichworte
detection; Magnetic beads; Lab-on-a-chip devices; Magnetic ratchet; Biosensors; Magnetoresistive
Erscheinungsjahr
2010
Titel des Konferenzbandes
Biosensors and Bioelectronics
Serien- oder Zeitschriftentitel
Biosensors and Bioelectronics
Band
26
Ausgabe
4
Seite(n)
1152-1163
ISSN
0956-5663
Page URI
https://pub.uni-bielefeld.de/record/2003394

Zitieren

Weddemann A, Albon C, Auge A, et al. How to design magneto-based total analysis systems for biomedical applications. In: Biosensors and Bioelectronics. Biosensors and Bioelectronics. Vol 26. Elsevier; 2010: 1152-1163.
Weddemann, A., Albon, C., Auge, A., Wittbracht, F., Hedwig, P., Akemeier, D., Rott, K., et al. (2010). How to design magneto-based total analysis systems for biomedical applications. Biosensors and Bioelectronics, Biosensors and Bioelectronics, 26, 1152-1163. Elsevier. https://doi.org/10.1016/j.bios.2010.06.031
Weddemann, Alexander, Albon, Camelia, Auge, Alexander, Wittbracht, Frank, Hedwig, Peter, Akemeier, Dieter, Rott, Karsten, Meissner, D., Jutzi, Peter, and Huetten, A. 2010. “How to design magneto-based total analysis systems for biomedical applications”. In Biosensors and Bioelectronics, 26:1152-1163. Biosensors and Bioelectronics. Elsevier.
Weddemann, A., Albon, C., Auge, A., Wittbracht, F., Hedwig, P., Akemeier, D., Rott, K., Meissner, D., Jutzi, P., and Huetten, A. (2010). “How to design magneto-based total analysis systems for biomedical applications” in Biosensors and Bioelectronics Biosensors and Bioelectronics, vol. 26, (Elsevier), 1152-1163.
Weddemann, A., et al., 2010. How to design magneto-based total analysis systems for biomedical applications. In Biosensors and Bioelectronics. Biosensors and Bioelectronics. no.26 Elsevier, pp. 1152-1163.
A. Weddemann, et al., “How to design magneto-based total analysis systems for biomedical applications”, Biosensors and Bioelectronics, Biosensors and Bioelectronics, vol. 26, Elsevier, 2010, pp.1152-1163.
Weddemann, A., Albon, C., Auge, A., Wittbracht, F., Hedwig, P., Akemeier, D., Rott, K., Meissner, D., Jutzi, P., Huetten, A.: How to design magneto-based total analysis systems for biomedical applications. Biosensors and Bioelectronics. Biosensors and Bioelectronics. 26, p. 1152-1163. Elsevier (2010).
Weddemann, Alexander, Albon, Camelia, Auge, Alexander, Wittbracht, Frank, Hedwig, Peter, Akemeier, Dieter, Rott, Karsten, Meissner, D., Jutzi, Peter, and Huetten, A. “How to design magneto-based total analysis systems for biomedical applications”. Biosensors and Bioelectronics. Elsevier, 2010.Vol. 26. Biosensors and Bioelectronics. 1152-1163.

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Protein separation under a microfluidic regime.
Rodríguez-Ruiz I, Babenko V, Martínez-Rodríguez S, Gavira JA., Analyst 143(3), 2018
PMID: 29214270
Magnetic sensing platform technologies for biomedical applications.
Lin G, Makarov D, Schmidt OG., Lab Chip 17(11), 2017
PMID: 28485417
Homogeneous Biosensing Based on Magnetic Particle Labels.
Schrittwieser S, Pelaz B, Parak WJ, Lentijo-Mozo S, Soulantica K, Dieckhoff J, Ludwig F, Guenther A, Tschöpe A, Schotter J., Sensors (Basel) 16(6), 2016
PMID: 27275824
Functional colloidal micro-sieves assembled and guided above a channel-free magnetic striped film.
Martinez-Pedrero F, Straube AV, Johansen TH, Tierno P., Lab Chip 15(7), 2015
PMID: 25685897
Continuous-flow particle guiding based on dipolar coupled magnetic superstructures in rotating magnetic fields.
Eickenberg B, Wittbracht F, Stohmann P, Schubert JR, Brill C, Weddemann A, Hütten A., Lab Chip 13(5), 2013
PMID: 23319201
Lab-on-a-Chip Magneto-Immunoassays: How to Ensure Contact between Superparamagnetic Beads and the Sensor Surface.
Eickenberg B, Meyer J, Helmich L, Kappe D, Auge A, Weddemann A, Wittbracht F, Hütten A., Biosensors (Basel) 3(3), 2013
PMID: 25586262
Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors.
Weddemann A, Ennen I, Regtmeier A, Albon C, Wolff A, Eckstädt K, Mill N, Peter MK, Mattay J, Plattner C, Sewald N, Hütten A., Beilstein J Nanotechnol 1(), 2010
PMID: 21977397

46 References

Daten bereitgestellt von Europe PubMed Central.

Biosensor recognition elements.
Chambers JP, Arulanandam BP, Matta LL, Weis A, Valdes JJ., Curr Issues Mol Biol 10(1-2), 2008
PMID: 18525101

edelstein, biosens bioelectron 14(2000), 2000

faxen, arkiv math astron fys 17(), 1923

janssen, biosens bioelectron 26(6), 2007

kim, j appl phys 103(7), 2008

li, sens actuators a 126(), 2006

néel, c r acad sci 255(), 1962

gijs, microfluid nanofluid 1(), 2004

mohanty, ieee 25(), 2006

jackson, 1975
Drug delivery and targeting.
Langer R., Nature 392(6679 Suppl), 1998
PMID: 9579855

landau, phys z sowjetunion 8(), 1935
Electrical noise in hysteretic ferromagnet–insulator–ferromagnet tunnel junctions
Nowak, Applied Physics Letters 74(4), 1999
Confined Brownian motion.
Faucheux LP, Libchaber AJ., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 49(6), 1994
PMID: 9961839
Model for detection of immobilized superparamagnetic nanosphere assay labels using giant magnetoresistive sensors
Tondra, Journal of Vacuum Science & Technology A Vacuum Surfaces and Films 18(4), 2000
Sensitive bondforce measurements of ligand-receptor pairs with magnetic beads.
Panhorst M, Kamp PB, Reiss G, Bruckl H., Biosens Bioelectron 20(8), 2005
PMID: 15626629
On the resolution limits of tunnel magnetoresistance sensors for particle detection
Weddemann, New Journal of Physics 11(11), 2009
A level set based approach for modeling oxidation processes of ligand stabilized metallic nanoparticles
Auge, Applied Physics Letters 96(9), 2010
1/f noise
Hooge, Physica B+C 83(1), 1976
Finite-element modeling of the separation of magnetic microparticles in fluid
Warnke, IEEE Transactions on Magnetics 39(3), 2003
Analysing a magnetic molecule detection system--computer simulation.
Schepper W, Schotter J, Bruckl H, Reiss G., J. Biotechnol. 112(1-2), 2004
PMID: 15288939
Immunosensors: The next generation.
Turner AP., Nat. Biotechnol. 15(5), 1997
PMID: 9131617
Characterisation of Dynabeads by magnetization measurements and Mössbauer spectroscopy
FONNUM, Journal of Magnetism and Magnetic Materials 293(1), 2005
Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor.
Grancharov SG, Zeng H, Sun S, Wang SX, O'Brien S, Murray CB, Kirtley JR, Held GA., J Phys Chem B 109(26), 2005
PMID: 16852617
Magnetism and microfluidics.
Pamme N., Lab Chip 6(1), 2005
PMID: 16372066
1∕f noise in magnetic tunnel junctions with MgO tunnel barriers
Gokce, Journal of Applied Physics 99(8), 2006
Study of the dynamic magnetic properties of soft CoFeB films
Bilzer, Journal of Applied Physics 100(5), 2006
Active Control of Dynamic Supraparticle Structures in Microchannels
Hayes, Langmuir 17(9), 2001
Noise in Thin Films Metal-Oxide-Metal AlAl2O3Al
Lecoy, physica status solidi (b) 30(1), 1968
Oxidation of metal nanoparticles: Experiment and model
Chernavskii, Russian Journal of Physical Chemistry B 1(4), 2007
Dynamics of two interacting dipoles
Laroze, Journal of Magnetism and Magnetic Materials 320(8), 2008

Wang, IEEE Transactions on Magnetics 44(7), 2008
Electrochemical Biosensors - Sensor Principles and Architectures.
Grieshaber D, MacKenzie R, Voros J, Reimhult E., Sensors (Basel) 8(3), 2008
PMID: 27879772
Artificial Brownian motors: Controlling transport on the nanoscale
Hänggi, Reviews of Modern Physics 81(1), 2009
A hydrodynamic switch: Microfluidic separation system for magnetic beads
Weddemann, Applied Physics Letters 94(17), 2009
Magnetic ratchet for biotechnological applications
Auge, Applied Physics Letters 94(18), 2009
Positioning system for particles in microfluidic structures
Weddemann, Microfluidics and Nanofluidics 7(6), 2009
Tunneling magnetoresistance sensors for high resolutive particle detection
Albon, Applied Physics Letters 95(2), 2009
Toward a magnetoresistive chip cytometer: Integrated detection of magnetic beads flowing at cm/s velocities in microfluidic channels
Loureiro, Applied Physics Letters 95(3), 2009
A combined reaction-separation lab-on-a-chip device for low Péclet number applications
Weddemann, Journal of Applied Physics 106(2), 2009
Effective magnetic moment of magnetic multicore nanoparticles
Schaller, Physical Review B 80(9), 2009
Number sensitive detection and direct imaging of dipolar coupled magnetic nanoparticles by tunnel magnetoresistive sensors
Albon, Applied Physics Letters 95(16), 2009
Dynamic simulations of the dipolar driven demagnetization process of magnetic multi-core nanoparticles
Weddemann, Journal of Magnetism and Magnetic Materials 322(6), 2010
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 20638263
PubMed | Europe PMC

Suchen in

Google Scholar