Using meiofauna to assess pollutants in freshwater sediments: A microcosm study with cadmium

Brinke M, Ristau K, Bergtold M, Hoess S, Claus E, Heininger P, Traunspurger W (2011)
Environmental Toxicology and Chemistry 30(2): 427-438.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ;
Abstract / Bemerkung
The direct and indirect effects of Cd on benthic communities were assessed in a freshwater microcosm study over a period of seven months (218 d). Cadmium was regarded as a model substance to evaluate the usefulness of small-scale laboratory microcosm with microscopic fauna. In particular, effects on the meiofauna community, an ecologically important but rather neglected benthic component, were investigated. In addition, some microfaunal parameters (protozoan abundance and microbial activity) were determined. The sediment was spiked with nominal Cd concentrations of 10, 100, and 1,000 mg/kg dry weight. Because of the strong binding of Cd to sediment particles, measured Cd pore-water concentrations never exceeded 129.5 +/- 40.7 mu g/L. At 1,000 mg/kg dry weight, the abundances of the two dominant meiofauna taxa, nematodes and oligochaetes, were significantly reduced throughout the present study. Regarding nematodes, species of bacterivorous taxa (Daptonema, Eumonhystera) decreased, whereas species of predacious and omnivorous taxa (Mononcluts, Dorylaimus, and Ironus) increased in dominance in microcosms of the highest Cd concentration. Transient effects on microfauna were observed, especially in the first half of the present study, with a reduction in microbial activity and protozoan abundance. However, in microcosms receiving the highest Cd concentration, the abundance of the flagellate Euglena mutabilis increased significantly toward the end of the present study. The results of the present study support the use of small-scale microcosms with natural meiofauna communities as a suitable tool to assess the impact of pollutants in freshwater sediments. Environ. Toxicol. Chem. 2011;30:427-438. (C) 2010 SETAC
Erscheinungsjahr
Zeitschriftentitel
Environmental Toxicology and Chemistry
Band
30
Ausgabe
2
Seite(n)
427-438
ISSN
PUB-ID

Zitieren

Brinke M, Ristau K, Bergtold M, et al. Using meiofauna to assess pollutants in freshwater sediments: A microcosm study with cadmium. Environmental Toxicology and Chemistry. 2011;30(2):427-438.
Brinke, M., Ristau, K., Bergtold, M., Hoess, S., Claus, E., Heininger, P., & Traunspurger, W. (2011). Using meiofauna to assess pollutants in freshwater sediments: A microcosm study with cadmium. Environmental Toxicology and Chemistry, 30(2), 427-438. doi:10.1002/etc.387
Brinke, M., Ristau, K., Bergtold, M., Hoess, S., Claus, E., Heininger, P., and Traunspurger, W. (2011). Using meiofauna to assess pollutants in freshwater sediments: A microcosm study with cadmium. Environmental Toxicology and Chemistry 30, 427-438.
Brinke, M., et al., 2011. Using meiofauna to assess pollutants in freshwater sediments: A microcosm study with cadmium. Environmental Toxicology and Chemistry, 30(2), p 427-438.
M. Brinke, et al., “Using meiofauna to assess pollutants in freshwater sediments: A microcosm study with cadmium”, Environmental Toxicology and Chemistry, vol. 30, 2011, pp. 427-438.
Brinke, M., Ristau, K., Bergtold, M., Hoess, S., Claus, E., Heininger, P., Traunspurger, W.: Using meiofauna to assess pollutants in freshwater sediments: A microcosm study with cadmium. Environmental Toxicology and Chemistry. 30, 427-438 (2011).
Brinke, Marvin, Ristau, Kai, Bergtold, Matthias, Hoess, Sebastian, Claus, Evelyn, Heininger, Peter, and Traunspurger, Walter. “Using meiofauna to assess pollutants in freshwater sediments: A microcosm study with cadmium”. Environmental Toxicology and Chemistry 30.2 (2011): 427-438.

11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Is Caenorhabditis elegans representative of freshwater nematode species in toxicity testing?
Haegerbaeumer A, Höss S, Heininger P, Traunspurger W., Environ Sci Pollut Res Int 25(3), 2018
PMID: 29143265
A comparative approach using ecotoxicological methods from single-species bioassays to model ecosystems.
Haegerbaeumer A, Höss S, Ristau K, Claus E, Möhlenkamp C, Heininger P, Traunspurger W., Environ Toxicol Chem 35(12), 2016
PMID: 27155316
Experimental studies with nematodes in ecotoxicology: an overview.
Hägerbäumer A, Höss S, Heininger P, Traunspurger W., J Nematol 47(1), 2015
PMID: 25861113
Utility of Classical α-Taxonomy for Biodiversity of Aquatic Nematodes.
Decraemer W, Backeljau T., J Nematol 47(1), 2015
PMID: 25861112
Small-scale microcosms to detect chemical induced changes in soil nematode communities--effects of crystal proteins and Bt-maize plant material.
Höss S, Reiff N, Nguyen HT, Jehle JA, Hermes H, Traunspurger W., Sci Total Environ 472(), 2014
PMID: 24317172
Sediment contact tests as a tool for the assessment of sediment quality in German waters.
Feiler U, Höss S, Ahlf W, Gilberg D, Hammers-Wirtz M, Hollert H, Meller M, Neumann-Hensel H, Ottermanns R, Seiler TB, Spira D, Heininger P., Environ Toxicol Chem 32(1), 2013
PMID: 23027525
The functional response of a freshwater benthic community to cadmium pollution.
Faupel M, Ristau K, Traunspurger W., Environ Pollut 162(), 2012
PMID: 22243854
On the relevance of meiobenthic research for policy-makers.
Schratzberger M., Mar Pollut Bull 64(12), 2012
PMID: 23017950
Nematode species at risk--a metric to assess pollution in soft sediments of freshwaters.
Höss S, Claus E, Von der Ohe PC, Brinke M, Güde H, Heininger P, Traunspurger W., Environ Int 37(5), 2011
PMID: 21482435

55 References

Daten bereitgestellt von Europe PubMed Central.


Lee, 1987
Indirect effects of contaminants in aquatic ecosystems.
Fleeger JW, Carman KR, Nisbet RM., Sci. Total Environ. 317(1-3), 2003
PMID: 14630423

Clements, 2002
Extrapolation in ecological risk assessment: Balancing pragmatism and precaution in chemical controls legislation
Forbes, Bioscience 52(), 2002
Threshold levels for effects of insecticides in freshwater ecosystems: a review.
Van Wijngaarden RP, Brock TC, Van den Brink PJ., Ecotoxicology 14(3), 2005
PMID: 15943110
The use of benthic mesocosms for the assessment of sediment contamination.
Fletcher R, Reynoldson TB, Taylor WD., Environ. Pollut. 115(2), 2001
PMID: 11706790
Influence of 4-nonylphenol on the structure of nematode communities in freshwater microcosms.
Hoss S, Traunspurger W, Severin GF, Juttner I, Pfister G, Schramm KW., Environ. Toxicol. Chem. 23(5), 2004
PMID: 15180379
Assessing effects of the pharmaceutical ivermectin on meiobenthic communities using freshwater microcosms.
Brinke M, Hoss S, Fink G, Ternes TA, Heininger P, Traunspurger W., Aquat. Toxicol. 99(2), 2010
PMID: 20451263
The specificity of meiobenthic community responses to different pollutants: Results from microcosm experiments
Austen, Mar Pollut Bull 28(), 1994
Individual and combined effects of cadmium and diesel on a nematode community in a laboratory microcosm experiment.
Beyrem H, Mahmoudi E, Essid N, Hedfi A, Boufahja F, Aissa P., Ecotoxicol. Environ. Saf. 68(3), 2007
PMID: 17303240
Linking ecological impact to metal concentrations and speciation: a microcosm experiment using a salt marsh meiofaunal community.
Millward RN, Carman KR, Fleeger JW, Gambrell RP, Powell RT, Rouse MA., Environ. Toxicol. Chem. 20(9), 2001
PMID: 11521831
Short-term effects of cadmium, copper, nickel and zinc on soil nematodes from different feeding and life-history strategy groups.
Korthals GW, Ende Avande, Megen Hvan, Lexmond TM, Kammenga JE, Bonger T., Agric., Ecosyst. Environ., Appl. Soil Ecol. 4(2), 1996
PMID: IND21811836
Effects of zinc contamination on a natural nematode community in outdoor soil mesocosms.
Smit CE, Schouten AJ, Van Den Brink PJ, van Esbroek ML, Posthuma L., Arch. Environ. Contam. Toxicol. 42(2), 2002
PMID: 11815812

Higgins, 1988

Giere, 2009
Free-living nematode associations in pool-19, Mississippi River
Anderson, J Freshw Ecol 7(), 1992

Traunspurger, 2002
Feeding habits in soil nematode families and genera-an outline for soil ecologists.
Yeates GW, Bongers T, De Goede RG, Freckman DW, Georgieva SS., J. Nematol. 25(3), 1993
PMID: 19279775
Acute sensitivity of nematode taxa to CuSO4 and relationships with feeding-type and life-history classification.
Bongers T, Ilieva-Makulec K, Ekschmitt K., Environ. Toxicol. Chem. 20(7), 2001
PMID: 11434292
Nematodes as indicators of pollution: A case study from the Swartkops River system, South Africa
Gyedu-Ababio, Hydrobiologia 397(), 1999
Directive 2008/105/EC on environmental quality standards in the field of water policy, amending and subsequently repealing Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC
The, Official Journal of the European Union L348(), 2008
Nematode communities in contaminated river sediments.
Heininger P, Hoss S, Claus E, Pelzer J, Traunspurger W., Environ. Pollut. 146(1), 2006
PMID: 16905227
On the killing, fixation and transferring to glycerin of nematodes
Seinhorst, Nematologica 8(), 1962
A rapid method for the transfer of nematodes from fixative to anhydrous glycerin
Seinhorst, Nematologica 4(), 1959

Obst, 1995

AUTHOR UNKNOWN, 0
Ecotoxicological assessment of aquatic sediments with Caenorhabditis elegans (Nematoda) - a method for testing liquid medium and whole-sediment samples
Traunspurger, Environ Toxicol Chem 16(), 1997
Impact of the fungicide carbendazim in freshwater microcosms. II. Zooplankton, primary producers and final conclusions.
Van den Brink PJ , Hattink J, Bransen F, Van Donk E , Brock TC., Aquat. Toxicol. 48(2-3), 2000
PMID: 10686330
Functional diversity of nematodes.
Bongers T, Bongers M., Agric., Ecosyst. Environ., Appl. Soil Ecol. 10(3), 1998
PMID: IND21972864
Principal response curves: Analysis of time-dependent multivariate responses of biological community to stress
Van, Environ Toxicol Chem 18(), 1999
Toxicity of cadmium in sediments: The role of acid volatile sulfide
Di, Environ Toxicol Chem 9(), 1990
Toxicity of cadmium to Caenorhabditis elegans (Nematoda) in whole sediment and pore water--the ambiguous role of organic matter.
Hoss S, Henschel T, Haitzer M, Traunspurger W, Steinberg CE., Environ. Toxicol. Chem. 20(12), 2001
PMID: 11764163
Bulk sediment bioassays with five species of fresh-water oligochaetes
Wiederholm, Water Air Soil Pollut 36(), 1987
Relative tolerances of selected aquatic oligochaetes to individual pollutants and environmental-factors
Chapman, Aquat Toxicol 2(), 1982
Quantifying copper and cadmium impacts on intrinsic rate of population increase in the terrestrial oligochaete Lumbricus rubellus.
Spurgeon DJ, Svendsen C, Weeks JM, Hankard PK, Stubberud HE, Kammenga JE., Environ. Toxicol. Chem. 22(7), 2003
PMID: 12836970
Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments.
Lee BG, Griscom SB, Lee JS, Choi HJ, Koh CH, Luoma SN, Fisher NS., Science 287(5451), 2000
PMID: 10634777
Toxicity of heavy metals to bacteria in sediments.
Montuelle B, Latour X, Volat B, Gounot AM., Bull Environ Contam Toxicol 53(5), 1994
PMID: 7833613
Effects of heavy metals on microbial activity of water and sediment communities
Romero, World J Microb Biot 15(), 1999
Acute toxicity of cadmium, copper, mercury, and zinc to ciliates from activated sludge plants.
Madoni P, Esteban G, Gorbi G., Bull Environ Contam Toxicol 49(6), 1992
PMID: 1450572
The effects of nematodes on bacterial activity and abundance in a freshwater sediment.
Traunspurger W, Bergtold M, Goedkoop W., Oecologia 112(1), 1997
PMID: 28307367
Effects of deposit-feeding macrofauna on benthic bacteria, viruses, and protozoa in a silty freshwater sediment.
Wieltschnig C, Fischer UR, Velimirov B, Kirschner AK., Microb. Ecol. 56(1), 2007
PMID: 17876654
Hydrolytic enzymes of some periphytic marine bacteria.
Corpe WA, Winters H., Can. J. Microbiol. 18(9), 1972
PMID: 4341919
Patterns of sensitivity to cadmium and pentachlorophenol among nematode species from different taxonomic and ecological groups.
Kammenga JE, Van Gestel CA, Bakker J., Arch. Environ. Contam. Toxicol. 27(1), 1994
PMID: 8024325
Recolonization of methyl bromide sterilized soils under four different field conditions.
Yeates GW, Bamforth SS, Ross DJ, Tate KR, Sparling GP., Biol. Fertil. Soils 11(3), 1991
PMID: IND91047904
Impact of pasture contamination by copper, chromium, arsenic timber preservative of soil biological activity.
Yeates GW, Orchard VA, Speir TW, Hunt JL, Hermans MCC., Biol. Fertil. Soils 18(3), 1994
PMID: IND20437127
Evidence for facilitation and inhibition of ciliate population-growth by meiofauna and macrofauna on a temperate zone sandflat
Epstein, J Exp Mar Bio Ecol 155(), 1992
Top-down control of benthic heterotrophic nanoflagellates by oligochaetes and microcrustaceans in a littoral freshwater habitat
Wieltschnig, Freshw Biol 48(), 2003
Benthic production by micro-, meio-, and macrobenthos in the profundal zone of an oligotrophic lake
Bergtold, J North Am Benthol Soc 24(), 2005
Top-down impact of bacterivorous nematodes on the bacterial community structure: a microcosm study.
De Mesel I, Derycke S, Moens T, Van der Gucht K, Vincx M, Swings J., Environ. Microbiol. 6(7), 2004
PMID: 15186352
Arsenic oxidation and bioaccumulation by the acidophilic protozoan, Euglena mutabilis, in acid mine drainage (Carnoules, France).
Casiot C, Bruneel O, Personne JC, Leblanc M, Elbaz-Poulichet F., Sci. Total Environ. 320(2-3), 2004
PMID: 15016511

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21038433
PubMed | Europe PMC

Suchen in

Google Scholar