Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels

Karg M, Pastoriza-Santos I, Rodriguez-Gonzalez B, von Klitzing R, Wellert S, Hellweg T (2008)
Langmuir 24(12): 6300-6306.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Karg, Matthias; Pastoriza-Santos, Isabel; Rodriguez-Gonzalez, Benito; von Klitzing, Regine; Wellert, Stefan; Hellweg, ThomasUniBi
Abstract / Bemerkung
The volume phase transition of colloidal microgels made of N-isopropylacrylamide (NIPAM) is well-studied and it is known that the transition temperature can be influenced by copolymerization. A series of poly(N-isopropylacrylamide-co-allylacetic acid) copolymers with different contents of allylacetic acid (AAA) was synthesized by means of a simple radical polymerization approach. The thermoresponsive behavior of these particles was studied using dynamic light scattering (DLS). Further characterization was done by employing transmission electron microscopy (TEM) and zeta potential measurements. TEM observations reveal the approximately spherical shape and low polydispersity of the copolymer particles. In addition, the measured zeta potentials provide information about the relative surface charge. Since these copolymers are much more sensitive to external stimuli such as pH and ionic strength than their pure PNIPAM counterparts, the volume phase transition was investigated at two different pH values and various salt concentrations. At pH 10 for the copolymer microgels with the highest AAA content, a significant shift of the volume phase transition temperature toward higher values is found. For higher AAA content, a change in pH from 8 to 10 can induce a change in radius of up to 100 nm making the particles interesting as pH controlled actuators.
Erscheinungsjahr
2008
Zeitschriftentitel
Langmuir
Band
24
Ausgabe
12
Seite(n)
6300-6306
ISSN
0743-7463
eISSN
1520-5827
Page URI
https://pub.uni-bielefeld.de/record/2000057

Zitieren

Karg M, Pastoriza-Santos I, Rodriguez-Gonzalez B, von Klitzing R, Wellert S, Hellweg T. Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels. Langmuir. 2008;24(12):6300-6306.
Karg, M., Pastoriza-Santos, I., Rodriguez-Gonzalez, B., von Klitzing, R., Wellert, S., & Hellweg, T. (2008). Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels. Langmuir, 24(12), 6300-6306. https://doi.org/10.1021/la702996p
Karg, Matthias, Pastoriza-Santos, Isabel, Rodriguez-Gonzalez, Benito, von Klitzing, Regine, Wellert, Stefan, and Hellweg, Thomas. 2008. “Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels”. Langmuir 24 (12): 6300-6306.
Karg, M., Pastoriza-Santos, I., Rodriguez-Gonzalez, B., von Klitzing, R., Wellert, S., and Hellweg, T. (2008). Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels. Langmuir 24, 6300-6306.
Karg, M., et al., 2008. Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels. Langmuir, 24(12), p 6300-6306.
M. Karg, et al., “Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels”, Langmuir, vol. 24, 2008, pp. 6300-6306.
Karg, M., Pastoriza-Santos, I., Rodriguez-Gonzalez, B., von Klitzing, R., Wellert, S., Hellweg, T.: Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels. Langmuir. 24, 6300-6306 (2008).
Karg, Matthias, Pastoriza-Santos, Isabel, Rodriguez-Gonzalez, Benito, von Klitzing, Regine, Wellert, Stefan, and Hellweg, Thomas. “Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels”. Langmuir 24.12 (2008): 6300-6306.

23 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Dual Stimuli-Triggered Nanogels in Response to Temperature and pH Changes for Controlled Drug Release.
Kim YK, Kim EJ, Lim JH, Cho HK, Hong WJ, Jeon HH, Chung BG., Nanoscale Res Lett 14(1), 2019
PMID: 30830486
Localization of Ion Concentration Gradients for Logic Operation.
Ryzhkov NV, Nesterov P, Mamchik NA, Yurchenko SO, Skorb EV., Front Chem 7(), 2019
PMID: 31245356
Super-resolution optical microscopy resolves network morphology of smart colloidal microgels.
Bergmann S, Wrede O, Huser T, Hellweg T., Phys Chem Chem Phys 20(7), 2018
PMID: 29392265
Design of Silica-Oligourethane-Collagen Membranes for Inflammatory Response Modulation: Characterization and Polarization of a Macrophage Cell Line.
Muñoz-González PU, Rivera-Debernardi O, Mendoza-Novelo B, Claudio-Rizo JA, Mata-Mata JL, Delgadillo-Holtfort I, Carriles R, Flores-Moreno M, González-García G, Cauich-Rodríguez JV, Delgado J, Castellano LE., Macromol Biosci 18(9), 2018
PMID: 29943462
Volume phase transition kinetics of smart N-n-propylacrylamide microgels studied by time-resolved pressure jump small angle neutron scattering.
Wrede O, Reimann Y, Lülsdorf S, Emmrich D, Schneider K, Schmid AJ, Zauser D, Hannappel Y, Beyer A, Schweins R, Gölzhäuser A, Hellweg T, Sottmann T., Sci Rep 8(1), 2018
PMID: 30213960
Smart Shear-Thinning Hydrogels as Injectable Drug Delivery Systems.
Samimi Gharaie S, Dabiri SMH, Akbari M., Polymers (Basel) 10(12), 2018
PMID: 30961242
Preferential adsorption of the additive is not a prerequisite for cononsolvency in water-rich mixtures.
Wang J, Wang N, Liu B, Bai J, Gong P, Ru G, Feng J., Phys Chem Chem Phys 19(44), 2017
PMID: 29099128
Multifunctional stimuli responsive polymer-gated iron and gold-embedded silica nano golf balls: Nanoshuttles for targeted on-demand theranostics.
Wang L, Jang G, Ban DK, Sant V, Seth J, Kazmi S, Patel N, Yang Q, Lee J, Janetanakit W, Wang S, Head BP, Glinsky G, Lal R., Bone Res 5(), 2017
PMID: 29285401
Mimicking of Chondrocyte Microenvironment Using In Situ Forming Dendritic Polyglycerol Sulfate-Based Synthetic Polyanionic Hydrogels.
Dey P, Schneider T, Chiappisi L, Gradzielski M, Schulze-Tanzil G, Haag R., Macromol Biosci 16(4), 2016
PMID: 26753995
Influence of Temperature on the Colloidal Stability of Polymer-Coated Gold Nanoparticles in Cell Culture Media.
Zyuzin MV, Honold T, Carregal-Romero S, Kantner K, Karg M, Parak WJ., Small 12(13), 2016
PMID: 26835654
Photosensitive microgels containing azobenzene surfactants of different charges.
Schimka S, Lomadze N, Rabe M, Kopyshev A, Lehmann M, von Klitzing R, Rumyantsev AM, Kramarenko EY, Santer S., Phys Chem Chem Phys 19(1), 2016
PMID: 27722591
Thermoresponsive fluorescence of a graphene-polymer composite based on a local surface plasmon resonance effect.
Huang Y, Lin W, Chen K, Zhang W, Chen X, Zhang MQ., Phys Chem Chem Phys 16(23), 2014
PMID: 24806411
Interaction of gold nanoparticles with thermoresponsive microgels: influence of the cross-linker density on optical properties.
Gawlitza K, Turner ST, Polzer F, Wellert S, Karg M, Mulvaney P, von Klitzing R., Phys Chem Chem Phys 15(37), 2013
PMID: 23942792
Synthesis of pH and temperature sensitive, core-shell nano/microgels, by one pot, soap-free emulsion polymerization.
Serrano-Medina A, Cornejo-Bravo JM, Licea-Claveríe A., J Colloid Interface Sci 369(1), 2012
PMID: 22226474
Immobilization of lipase B within micron-sized poly-N-isopropylacrylamide hydrogel particles by solvent exchange.
Gawlitza K, Wu C, Georgieva R, Wang D, Ansorge-Schumacher MB, von Klitzing R., Phys Chem Chem Phys 14(27), 2012
PMID: 22684227
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18489184
PubMed | Europe PMC

Suchen in

Google Scholar