Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell

Karg M, Wellert S, Pastoriza-Santos I, Lapp A, Liz-Marzan LM, Hellweg T (2008)
Physical Chemistry Chemical Physics 10(44): 6708-6716.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Karg, Matthias; Wellert, Stefan; Pastoriza-Santos, Isabel; Lapp, Alain; Liz-Marzan, Luis M.; Hellweg, ThomasUniBi
Abstract / Bemerkung
Core-shell microgels made of the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAM) and silica nanoparticles as inorganic cores were investigated by dynamic light scattering (DLS) and small angle neutron scattering (SANS). In order to study the response of the particles upon changes of temperature, experiments were done in a temperature interval close to the volume phase transition temperature of the PNIPAM shell. While DLS probes the hydrodynamic dimensions of the particles, determining their centre of mass diffusion, SANS provides the correlation length x of the PNIPAM network. Additionally, the composite particles were characterised by electron microscopy as well as atomic force microscopy to reveal the core-shell structure and at the same time the approximate dimensions and the shape of the microgels.
Erscheinungsjahr
2008
Zeitschriftentitel
Physical Chemistry Chemical Physics
Band
10
Ausgabe
44
Seite(n)
6708-6716
ISSN
1463-9076
eISSN
1463-9084
Page URI
https://pub.uni-bielefeld.de/record/2000031

Zitieren

Karg M, Wellert S, Pastoriza-Santos I, Lapp A, Liz-Marzan LM, Hellweg T. Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell. Physical Chemistry Chemical Physics. 2008;10(44):6708-6716.
Karg, M., Wellert, S., Pastoriza-Santos, I., Lapp, A., Liz-Marzan, L. M., & Hellweg, T. (2008). Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell. Physical Chemistry Chemical Physics, 10(44), 6708-6716. https://doi.org/10.1039/b802676a
Karg, Matthias, Wellert, Stefan, Pastoriza-Santos, Isabel, Lapp, Alain, Liz-Marzan, Luis M., and Hellweg, Thomas. 2008. “Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell”. Physical Chemistry Chemical Physics 10 (44): 6708-6716.
Karg, M., Wellert, S., Pastoriza-Santos, I., Lapp, A., Liz-Marzan, L. M., and Hellweg, T. (2008). Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell. Physical Chemistry Chemical Physics 10, 6708-6716.
Karg, M., et al., 2008. Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell. Physical Chemistry Chemical Physics, 10(44), p 6708-6716.
M. Karg, et al., “Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell”, Physical Chemistry Chemical Physics, vol. 10, 2008, pp. 6708-6716.
Karg, M., Wellert, S., Pastoriza-Santos, I., Lapp, A., Liz-Marzan, L.M., Hellweg, T.: Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell. Physical Chemistry Chemical Physics. 10, 6708-6716 (2008).
Karg, Matthias, Wellert, Stefan, Pastoriza-Santos, Isabel, Lapp, Alain, Liz-Marzan, Luis M., and Hellweg, Thomas. “Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell”. Physical Chemistry Chemical Physics 10.44 (2008): 6708-6716.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Multi-Shell Hollow Nanogels with Responsive Shell Permeability.
Schmid AJ, Dubbert J, Rudov AA, Pedersen JS, Lindner P, Karg M, Potemkin II, Richtering W., Sci Rep 6(), 2016
PMID: 26984478
Core-shell-shell and hollow double-shell microgels with advanced temperature responsiveness.
Dubbert J, Nothdurft K, Karg M, Richtering W., Macromol Rapid Commun 36(2), 2015
PMID: 25354836
Photoluminescent smart hydrogels with reversible and linear thermoresponses.
Jiang Y, Yang X, Ma C, Wang C, Li H, Dong F, Zhai X, Yu K, Lin Q, Yang B., Small 6(23), 2010
PMID: 21069754

47 References

Daten bereitgestellt von Europe PubMed Central.

Temperature-sensitive aqueous microgels.
Pelton R., Adv Colloid Interface Sci 85(1), 2000
PMID: 10696447

Nayak, Angew. Chem., Int. Ed. 44(), 2005

Ballauff, Polymer 48(7), 2007

Bromberg, Langmuir 18(), 2002
Thermally modulated insulin release from microgel thin films.
Nolan CM, Serpe MJ, Lyon LA., Biomacromolecules 5(5), 2004
PMID: 15360309

Serpe, Langmuir 19(), 2003

Schmidt, POLYMER 49(), 2008
A versatile approach for the preparation of thermosensitive PNIPAM core-shell microgels with nanoparticle cores.
Karg M, Pastoriza-Santos I, Liz-Marzan LM, Hellweg T., Chemphyschem 7(11), 2006
PMID: 17013983

Singh, Chem. Mater. 19(), 2007

Contreras-Cáceres, Adv. Mater. 20(), 2008
Thermosensitive core-shell particles as carrier systems for metallic nanoparticles.
Lu Y, Mei Y, Ballauff M, Drechsler M., J Phys Chem B 110(9), 2006
PMID: 16509678

Lu, Angew. Chem., Int. Ed. 45(), 2006
Nanorod-coated PNIPAM microgels: thermoresponsive optical properties.
Karg M, Pastoriza-Santos I, Perez-Juste J, Hellweg T, Liz-Marzan LM., Small 3(7), 2007
PMID: 17487899
Microlens formation in microgel/gold colloid composite materials via photothermal patterning.
Jones CD, Serpe MJ, Schroeder L, Lyon LA., J. Am. Chem. Soc. 125(18), 2003
PMID: 12720438

Wong, J. Magn. Magn. Mater. 311(), 2007

Pich, Polym. Int. 56(), 2007

Ballauff, Prog. Polym. Sci. 32(), 2007

Crowther, Colloids Surf., A 152(), 1999

Dingenouts, Phys. Chem. Chem. Phys. 3(), 2001

Fernandez-Nieves, Phys. Rev. E 64(5), 2001

Berndt, Macromolecules 36(), 2003

Kratz, Polymer 42(15), 2001

Shibayama, J. Chem. Phys. 97(9), 1992

Kratz, Colloids Surf., A 197(1–3), 0

Tanaka, Phys. Rev. A 17(2), 1978
Nonasymptotic critical behavior from field theory at d=3: The disordered-phase case.
Bagnuls C, Bervillier C., Phys. Rev., B Condens. Matter 32(11), 1985
PMID: 9936864

Bagnuls, Phys. Lett. A 107(7), 1985
Nonuniversal power laws and crossover from critical to classical behavior.
Bagnuls C, Bervillier C., Phys. Rev. Lett. 58(5), 1987
PMID: 10034938

Li, J. Chem. Phys. 90(9), 1989

Mallam, J. Chem. Phys. 91(10), 1989

Shibayama, J. Chem. Phys. 97(9), 1992
Scattering from network polydispersity in polymer gels.
Geissler E, Horkay F, Hecht AM., Phys. Rev. Lett. 71(4), 1993
PMID: 10055328

Pusey, J. Chem. Phys. 77(9), 1982

Burchard, Prog. Colloid Polym. Sci. 80(), 1989

Stöber, J. Colloid Interface Sci. 26(), 1968

Pelton, Colloids Surf. 20(), 1986

Provencher, Comput. Phys. Commun. 27(), 1982

Provencher, Comput. Phys. Commun. 27(), 1982

Koppel, J. Chem. Phys. 57(11), 1972

Brulet, J. Appl. Crystallogr. 40(), 2007
PNIPAM-co-polystyrene core-shell microgels: structure, swelling behavior, and crystallization.
Hellweg T, Dewhurst CD, Eimer W, Kratz K., Langmuir 20(11), 2004
PMID: 15969135

Duracher, Colloid Polym. Sci. 276(), 1998

Duracher, Colloid Polym. Sci. 276(), 1998
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18989484
PubMed | Europe PMC

Suchen in

Google Scholar