Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell
Karg M, Wellert S, Pastoriza-Santos I, Lapp A, Liz-Marzan LM, Hellweg T (2008)
Physical Chemistry Chemical Physics 10(44): 6708-6716.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Karg, Matthias;
Wellert, Stefan;
Pastoriza-Santos, Isabel;
Lapp, Alain;
Liz-Marzan, Luis M.;
Hellweg, ThomasUniBi
Abstract / Bemerkung
Core-shell microgels made of the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAM) and silica nanoparticles as inorganic cores were investigated by dynamic light scattering (DLS) and small angle neutron scattering (SANS). In order to study the response of the particles upon changes of temperature, experiments were done in a temperature interval close to the volume phase transition temperature of the PNIPAM shell. While DLS probes the hydrodynamic dimensions of the particles, determining their centre of mass diffusion, SANS provides the correlation length x of the PNIPAM network. Additionally, the composite particles were characterised by electron microscopy as well as atomic force microscopy to reveal the core-shell structure and at the same time the approximate dimensions and the shape of the microgels.
Erscheinungsjahr
2008
Zeitschriftentitel
Physical Chemistry Chemical Physics
Band
10
Ausgabe
44
Seite(n)
6708-6716
ISSN
1463-9076
eISSN
1463-9084
Page URI
https://pub.uni-bielefeld.de/record/2000031
Zitieren
Karg M, Wellert S, Pastoriza-Santos I, Lapp A, Liz-Marzan LM, Hellweg T. Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell. Physical Chemistry Chemical Physics. 2008;10(44):6708-6716.
Karg, M., Wellert, S., Pastoriza-Santos, I., Lapp, A., Liz-Marzan, L. M., & Hellweg, T. (2008). Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell. Physical Chemistry Chemical Physics, 10(44), 6708-6716. https://doi.org/10.1039/b802676a
Karg, Matthias, Wellert, Stefan, Pastoriza-Santos, Isabel, Lapp, Alain, Liz-Marzan, Luis M., and Hellweg, Thomas. 2008. “Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell”. Physical Chemistry Chemical Physics 10 (44): 6708-6716.
Karg, M., Wellert, S., Pastoriza-Santos, I., Lapp, A., Liz-Marzan, L. M., and Hellweg, T. (2008). Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell. Physical Chemistry Chemical Physics 10, 6708-6716.
Karg, M., et al., 2008. Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell. Physical Chemistry Chemical Physics, 10(44), p 6708-6716.
M. Karg, et al., “Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell”, Physical Chemistry Chemical Physics, vol. 10, 2008, pp. 6708-6716.
Karg, M., Wellert, S., Pastoriza-Santos, I., Lapp, A., Liz-Marzan, L.M., Hellweg, T.: Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell. Physical Chemistry Chemical Physics. 10, 6708-6716 (2008).
Karg, Matthias, Wellert, Stefan, Pastoriza-Santos, Isabel, Lapp, Alain, Liz-Marzan, Luis M., and Hellweg, Thomas. “Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell”. Physical Chemistry Chemical Physics 10.44 (2008): 6708-6716.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
3 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Multi-Shell Hollow Nanogels with Responsive Shell Permeability.
Schmid AJ, Dubbert J, Rudov AA, Pedersen JS, Lindner P, Karg M, Potemkin II, Richtering W., Sci Rep 6(), 2016
PMID: 26984478
Schmid AJ, Dubbert J, Rudov AA, Pedersen JS, Lindner P, Karg M, Potemkin II, Richtering W., Sci Rep 6(), 2016
PMID: 26984478
Core-shell-shell and hollow double-shell microgels with advanced temperature responsiveness.
Dubbert J, Nothdurft K, Karg M, Richtering W., Macromol Rapid Commun 36(2), 2015
PMID: 25354836
Dubbert J, Nothdurft K, Karg M, Richtering W., Macromol Rapid Commun 36(2), 2015
PMID: 25354836
Photoluminescent smart hydrogels with reversible and linear thermoresponses.
Jiang Y, Yang X, Ma C, Wang C, Li H, Dong F, Zhai X, Yu K, Lin Q, Yang B., Small 6(23), 2010
PMID: 21069754
Jiang Y, Yang X, Ma C, Wang C, Li H, Dong F, Zhai X, Yu K, Lin Q, Yang B., Small 6(23), 2010
PMID: 21069754
47 References
Daten bereitgestellt von Europe PubMed Central.
Temperature-sensitive aqueous microgels.
Pelton R., Adv Colloid Interface Sci 85(1), 2000
PMID: 10696447
Pelton R., Adv Colloid Interface Sci 85(1), 2000
PMID: 10696447
Nayak, Angew. Chem., Int. Ed. 44(), 2005
Ballauff, Polymer 48(7), 2007
Bromberg, Langmuir 18(), 2002
Thermally modulated insulin release from microgel thin films.
Nolan CM, Serpe MJ, Lyon LA., Biomacromolecules 5(5), 2004
PMID: 15360309
Nolan CM, Serpe MJ, Lyon LA., Biomacromolecules 5(5), 2004
PMID: 15360309
Serpe, Langmuir 19(), 2003
Swelling and deswelling of adsorbed microgel monolayers triggered by changes in temperature, pH, and electrolyte concentration.
Nerapusri V, Keddie JL, Vincent B, Bushnak IA., Langmuir 22(11), 2006
PMID: 16700591
Nerapusri V, Keddie JL, Vincent B, Bushnak IA., Langmuir 22(11), 2006
PMID: 16700591
Schmidt, POLYMER 49(), 2008
A versatile approach for the preparation of thermosensitive PNIPAM core-shell microgels with nanoparticle cores.
Karg M, Pastoriza-Santos I, Liz-Marzan LM, Hellweg T., Chemphyschem 7(11), 2006
PMID: 17013983
Karg M, Pastoriza-Santos I, Liz-Marzan LM, Hellweg T., Chemphyschem 7(11), 2006
PMID: 17013983
Singh, Chem. Mater. 19(), 2007
Contreras-Cáceres, Adv. Mater. 20(), 2008
Thermosensitive core-shell particles as carrier systems for metallic nanoparticles.
Lu Y, Mei Y, Ballauff M, Drechsler M., J Phys Chem B 110(9), 2006
PMID: 16509678
Lu Y, Mei Y, Ballauff M, Drechsler M., J Phys Chem B 110(9), 2006
PMID: 16509678
Lu, Angew. Chem., Int. Ed. 45(), 2006
Microgels loaded with gold nanorods: photothermally triggered volume transitions under physiological conditions.
Das M, Sanson N, Fava D, Kumacheva E., Langmuir 23(1), 2007
PMID: 17190504
Das M, Sanson N, Fava D, Kumacheva E., Langmuir 23(1), 2007
PMID: 17190504
Nanorod-coated PNIPAM microgels: thermoresponsive optical properties.
Karg M, Pastoriza-Santos I, Perez-Juste J, Hellweg T, Liz-Marzan LM., Small 3(7), 2007
PMID: 17487899
Karg M, Pastoriza-Santos I, Perez-Juste J, Hellweg T, Liz-Marzan LM., Small 3(7), 2007
PMID: 17487899
Microlens formation in microgel/gold colloid composite materials via photothermal patterning.
Jones CD, Serpe MJ, Schroeder L, Lyon LA., J. Am. Chem. Soc. 125(18), 2003
PMID: 12720438
Jones CD, Serpe MJ, Schroeder L, Lyon LA., J. Am. Chem. Soc. 125(18), 2003
PMID: 12720438
Wong, J. Magn. Magn. Mater. 311(), 2007
Pich, Polym. Int. 56(), 2007
Ballauff, Prog. Polym. Sci. 32(), 2007
Crowther, Colloids Surf., A 152(), 1999
Dingenouts, Phys. Chem. Chem. Phys. 3(), 2001
Fernandez-Nieves, Phys. Rev. E 64(5), 2001
Berndt, Macromolecules 36(), 2003
Influence of shell thickness and cross-link density on the structure of temperature-sensitive poly-N-isopropylacrylamide-poly-N-isopropylmethacrylamide core-shell microgels investigated by small-angle neutron scattering.
Berndt I, Pedersen JS, Lindner P, Richtering W., Langmuir 22(1), 2006
PMID: 16378460
Berndt I, Pedersen JS, Lindner P, Richtering W., Langmuir 22(1), 2006
PMID: 16378460
Kratz, Polymer 42(15), 2001
Shibayama, J. Chem. Phys. 97(9), 1992
Kratz, Colloids Surf., A 197(1–3), 0
Tanaka, Phys. Rev. A 17(2), 1978
Nonasymptotic critical behavior from field theory at d=3: The disordered-phase case.
Bagnuls C, Bervillier C., Phys. Rev., B Condens. Matter 32(11), 1985
PMID: 9936864
Bagnuls C, Bervillier C., Phys. Rev., B Condens. Matter 32(11), 1985
PMID: 9936864
Bagnuls, Phys. Lett. A 107(7), 1985
Nonuniversal power laws and crossover from critical to classical behavior.
Bagnuls C, Bervillier C., Phys. Rev. Lett. 58(5), 1987
PMID: 10034938
Bagnuls C, Bervillier C., Phys. Rev. Lett. 58(5), 1987
PMID: 10034938
Li, J. Chem. Phys. 90(9), 1989
Mallam, J. Chem. Phys. 91(10), 1989
Shibayama, J. Chem. Phys. 97(9), 1992
Scattering from network polydispersity in polymer gels.
Geissler E, Horkay F, Hecht AM., Phys. Rev. Lett. 71(4), 1993
PMID: 10055328
Geissler E, Horkay F, Hecht AM., Phys. Rev. Lett. 71(4), 1993
PMID: 10055328
Scattering by inhomogeneous systems with rough internal surfaces: Porous solids and random-field Ising systems.
Wong Pz., Phys. Rev., B Condens. Matter 32(11), 1985
PMID: 9936886
Wong Pz., Phys. Rev., B Condens. Matter 32(11), 1985
PMID: 9936886
Pusey, J. Chem. Phys. 77(9), 1982
Burchard, Prog. Colloid Polym. Sci. 80(), 1989
Stöber, J. Colloid Interface Sci. 26(), 1968
Pelton, Colloids Surf. 20(), 1986
Provencher, Comput. Phys. Commun. 27(), 1982
Provencher, Comput. Phys. Commun. 27(), 1982
Koppel, J. Chem. Phys. 57(11), 1972
Brulet, J. Appl. Crystallogr. 40(), 2007
PNIPAM-co-polystyrene core-shell microgels: structure, swelling behavior, and crystallization.
Hellweg T, Dewhurst CD, Eimer W, Kratz K., Langmuir 20(11), 2004
PMID: 15969135
Hellweg T, Dewhurst CD, Eimer W, Kratz K., Langmuir 20(11), 2004
PMID: 15969135
Duracher, Colloid Polym. Sci. 276(), 1998
Duracher, Colloid Polym. Sci. 276(), 1998
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 18989484
PubMed | Europe PMC
Suchen in