Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with H-1-P-31 HSQC NMR spectroscopy
Gaeb J, Melzer M, Kehe K, Wellert S, Hellweg T, Blum M-M (2010)
Analytical and Bioanalytical Chemistry 396(3): 1213-1221.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Gaeb, Juergen;
Melzer, Marco;
Kehe, Kai;
Wellert, Stefan;
Hellweg, ThomasUniBi ;
Blum, Marc-Michael
Abstract / Bemerkung
The enzyme diisopropyl fluorophosphatase (DFPase, EC 3.1.8.2) from the squid Loligo vulgaris effectively catalyzes the hydrolysis of diisopropyl fluorophosphate (DFP) and a number of organophosphorus nerve agents, including sarin, soman, cyclosarin, and tabun. Until now, determination of kinetic data has been achieved by use of techniques such as pH-stat titration, ion-selective electrodes, and a recently introduced method based on in situ Fourier-transform infrared (FTIR) spectroscopy. We report the use of 1D H-1-P-31 HSQC NMR spectroscopy as a new method for real-time quantification of the hydrolysis of toxic organophosphonates by DFPase. The method is demonstrated for the agents sarin (GB), soman (GD), and cyclosarin (GD) but can also be used for V-type nerve agents, for example VX. Besides buffered aqueous solutions the method was used to determine enzymatic activities in a biodiesel-based bicontinuous microemulsion that serves as an example of complex decontamination media, for which other established techniques often fail. The method is non-invasive and requires only limited manual handling of small volumes of liquid (700 mu L), which adds to work safety when handling highly toxic organophosphorus compounds. Limits of detection are slightly below 100 mu mol L-1 on a 400 MHz spectrometer with 16 FIDs added for a single time frame. The method is not restricted to DFPase but can be used with other phosphotriesterases, for example paraxonase (PON), and even reactive chemicals, for example oximes and other nucleophiles, as long as the reaction components are compatible with the NMR experiment.
Stichworte
Enzymes;
Phosphotriesterases;
Nerve agents;
NMR;
DFPase;
Hydrolases
Erscheinungsjahr
2010
Zeitschriftentitel
Analytical and Bioanalytical Chemistry
Band
396
Ausgabe
3
Seite(n)
1213-1221
ISSN
1618-2642
eISSN
1618-2650
Page URI
https://pub.uni-bielefeld.de/record/1999947
Zitieren
Gaeb J, Melzer M, Kehe K, Wellert S, Hellweg T, Blum M-M. Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with H-1-P-31 HSQC NMR spectroscopy. Analytical and Bioanalytical Chemistry. 2010;396(3):1213-1221.
Gaeb, J., Melzer, M., Kehe, K., Wellert, S., Hellweg, T., & Blum, M. - M. (2010). Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with H-1-P-31 HSQC NMR spectroscopy. Analytical and Bioanalytical Chemistry, 396(3), 1213-1221. https://doi.org/10.1007/s00216-009-3299-2
Gaeb, Juergen, Melzer, Marco, Kehe, Kai, Wellert, Stefan, Hellweg, Thomas, and Blum, Marc-Michael. 2010. “Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with H-1-P-31 HSQC NMR spectroscopy”. Analytical and Bioanalytical Chemistry 396 (3): 1213-1221.
Gaeb, J., Melzer, M., Kehe, K., Wellert, S., Hellweg, T., and Blum, M. - M. (2010). Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with H-1-P-31 HSQC NMR spectroscopy. Analytical and Bioanalytical Chemistry 396, 1213-1221.
Gaeb, J., et al., 2010. Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with H-1-P-31 HSQC NMR spectroscopy. Analytical and Bioanalytical Chemistry, 396(3), p 1213-1221.
J. Gaeb, et al., “Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with H-1-P-31 HSQC NMR spectroscopy”, Analytical and Bioanalytical Chemistry, vol. 396, 2010, pp. 1213-1221.
Gaeb, J., Melzer, M., Kehe, K., Wellert, S., Hellweg, T., Blum, M.-M.: Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with H-1-P-31 HSQC NMR spectroscopy. Analytical and Bioanalytical Chemistry. 396, 1213-1221 (2010).
Gaeb, Juergen, Melzer, Marco, Kehe, Kai, Wellert, Stefan, Hellweg, Thomas, and Blum, Marc-Michael. “Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with H-1-P-31 HSQC NMR spectroscopy”. Analytical and Bioanalytical Chemistry 396.3 (2010): 1213-1221.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
8 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Extraction of model contaminants from solid surfaces by environmentally compatible microemulsions.
Vargas-Ruiz S, Schulreich C, Kostevic A, Tiersch B, Koetz J, Kakorin S, von Klitzing R, Jung M, Hellweg T, Wellert S., J Colloid Interface Sci 471(), 2016
PMID: 26994352
Vargas-Ruiz S, Schulreich C, Kostevic A, Tiersch B, Koetz J, Kakorin S, von Klitzing R, Jung M, Hellweg T, Wellert S., J Colloid Interface Sci 471(), 2016
PMID: 26994352
Efficient Surface Display of Diisopropylfluorophosphatase (DFPase) in E. coli for Biodegradation of Toxic Organophosphorus Compounds (DFP and Cp).
Latifi AM, Karami A, Khodi S., Appl Biochem Biotechnol 177(3), 2015
PMID: 26239441
Latifi AM, Karami A, Khodi S., Appl Biochem Biotechnol 177(3), 2015
PMID: 26239441
An enzyme containing microemulsion based on skin friendly oil and surfactant as decontamination medium for organo phosphates: phase behavior, structure, and enzyme activity.
Stehle R, Schulreich C, Wellert S, Gäb J, Blum MM, Kehe K, Richardt A, Lapp A, Hellweg T., J Colloid Interface Sci 413(), 2014
PMID: 24183440
Stehle R, Schulreich C, Wellert S, Gäb J, Blum MM, Kehe K, Richardt A, Lapp A, Hellweg T., J Colloid Interface Sci 413(), 2014
PMID: 24183440
Historical perspective and modern applications of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR).
Blum MM, John H., Drug Test Anal 4(3-4), 2012
PMID: 22113892
Blum MM, John H., Drug Test Anal 4(3-4), 2012
PMID: 22113892
Temperature dependence of the surfactant film bending elasticity in a bicontinuous sugar surfactant based microemulsion: a quasielastic scattering study.
Wellert S, Karg M, Holderer O, Richardt A, Hellweg T., Phys Chem Chem Phys 13(8), 2011
PMID: 21152562
Wellert S, Karg M, Holderer O, Richardt A, Hellweg T., Phys Chem Chem Phys 13(8), 2011
PMID: 21152562
The DFPase from Loligo vulgaris in sugar surfactant-based bicontinuous microemulsions: structure, dynamics, and enzyme activity.
Wellert S, Tiersch B, Koetz J, Richardt A, Lapp A, Holderer O, Gäb J, Blum MM, Schulreich C, Stehle R, Hellweg T., Eur Biophys J 40(6), 2011
PMID: 21416312
Wellert S, Tiersch B, Koetz J, Richardt A, Lapp A, Holderer O, Gäb J, Blum MM, Schulreich C, Stehle R, Hellweg T., Eur Biophys J 40(6), 2011
PMID: 21416312
Destruction and detection of chemical warfare agents.
Kim K, Tsay OG, Atwood DA, Churchill DG., Chem Rev 111(9), 2011
PMID: 21667946
Kim K, Tsay OG, Atwood DA, Churchill DG., Chem Rev 111(9), 2011
PMID: 21667946
Dynamics of the interfacial film in bicontinuous microemulsions based on a partly ionic surfactant mixture: A neutron spin-echo study.
Wellert S, Altmann HJ, Richardt A, Lapp A, Falus P, Farago B, Hellweg T., Eur Phys J E Soft Matter 33(3), 2010
PMID: 21061040
Wellert S, Altmann HJ, Richardt A, Lapp A, Falus P, Farago B, Hellweg T., Eur Phys J E Soft Matter 33(3), 2010
PMID: 21061040
26 References
Daten bereitgestellt von Europe PubMed Central.
AUTHOR UNKNOWN, 0
What lessons can we learn from the Japanese sarin attacks?
Vale A., Prz. Lek. 62(6), 2005
PMID: 16225116
Vale A., Prz. Lek. 62(6), 2005
PMID: 16225116
Crystal structure of diisopropylfluorophosphatase from Loligo vulgaris.
Scharff EI, Koepke J, Fritzsch G, Lucke C, Ruterjans H., Structure 9(6), 2001
PMID: 11435114
Scharff EI, Koepke J, Fritzsch G, Lucke C, Ruterjans H., Structure 9(6), 2001
PMID: 11435114
Binding of a designed substrate analogue to diisopropyl fluorophosphatase: implications for the phosphotriesterase mechanism.
Blum MM, Lohr F, Richardt A, Ruterjans H, Chen JC., J. Am. Chem. Soc. 128(39), 2006
PMID: 17002369
Blum MM, Lohr F, Richardt A, Ruterjans H, Chen JC., J. Am. Chem. Soc. 128(39), 2006
PMID: 17002369
MM, Proc Natl Acad Sci USA 106(), 2009
Quantification of hydrolysis of toxic organophosphates and organophosphonates by diisopropyl fluorophosphatase from Loligo vulgaris by in situ Fourier transform infrared spectroscopy.
Gab J, Melzer M, Kehe K, Richardt A, Blum MM., Anal. Biochem. 385(2), 2008
PMID: 19084491
Gab J, Melzer M, Kehe K, Richardt A, Blum MM., Anal. Biochem. 385(2), 2008
PMID: 19084491
High-yield expression, purification, and characterization of the recombinant diisopropylfluorophosphatase from Loligo vulgaris.
Hartleib J, Ruterjans H., Protein Expr. Purif. 21(1), 2001
PMID: 11162408
Hartleib J, Ruterjans H., Protein Expr. Purif. 21(1), 2001
PMID: 11162408
Purification of a DFP-hydrolyzing enzyme from squid head ganglion.
Hoskin FC, Long RJ., Arch. Biochem. Biophys. 150(2), 1972
PMID: 4339736
Hoskin FC, Long RJ., Arch. Biochem. Biophys. 150(2), 1972
PMID: 4339736
Hydrolysis of nerve gas by squid-type diisopropyl phosphorofluoridate hydrolyzing enzyme on agarose resin.
Hoskin FC, Roush AH., Science 215(4537), 1982
PMID: 7058344
Hoskin FC, Roush AH., Science 215(4537), 1982
PMID: 7058344
Insights into the reaction mechanism of the diisopropyl fluorophosphatase from Loligo vulgaris by means of kinetic studies, chemical modification and site-directed mutagenesis.
Hartleib J, Ruterjans H., Biochim. Biophys. Acta 1546(2), 2001
PMID: 11295437
Hartleib J, Ruterjans H., Biochim. Biophys. Acta 1546(2), 2001
PMID: 11295437
Enhanced stereoselective hydrolysis of toxic organophosphates by directly evolved variants of mammalian serum paraoxonase.
Amitai G, Gaidukov L, Adani R, Yishay S, Yacov G, Kushnir M, Teitlboim S, Lindenbaum M, Bel P, Khersonsky O, Tawfik DS, Meshulam H., FEBS J. 273(9), 2006
PMID: 16640555
Amitai G, Gaidukov L, Adani R, Yishay S, Yacov G, Kushnir M, Teitlboim S, Lindenbaum M, Bel P, Khersonsky O, Tawfik DS, Meshulam H., FEBS J. 273(9), 2006
PMID: 16640555
Analogues with fluorescent leaving groups for screening and selection of enzymes that efficiently hydrolyze organophosphorus nerve agents.
Briseno-Roa L, Hill J, Notman S, Sellers D, Smith AP, Timperley CM, Wetherell J, Williams NH, Williams GR, Fersht AR, Griffiths AD., J. Med. Chem. 49(1), 2006
PMID: 16392809
Briseno-Roa L, Hill J, Notman S, Sellers D, Smith AP, Timperley CM, Wetherell J, Williams NH, Williams GR, Fersht AR, Griffiths AD., J. Med. Chem. 49(1), 2006
PMID: 16392809
Inhibitory potency against human acetylcholinesterase and enzymatic hydrolysis of fluorogenic nerve agent mimics by human paraoxonase 1 and squid diisopropyl fluorophosphatase.
Blum MM, Timperley CM, Williams GR, Thiermann H, Worek F., Biochemistry 47(18), 2008
PMID: 18396898
Blum MM, Timperley CM, Williams GR, Thiermann H, Worek F., Biochemistry 47(18), 2008
PMID: 18396898
Structure of biodiesel based bicontinuous microemulsions for environmentally compatible decontamination: A small angle neutron scattering and freeze fracture electron microscopy study.
Wellert S, Karg M, Imhof H, Steppin A, Altmann HJ, Dolle M, Richardt A, Tiersch B, Koetz J, Lapp A, Hellweg T., J Colloid Interface Sci 325(1), 2008
PMID: 18571191
Wellert S, Karg M, Imhof H, Steppin A, Altmann HJ, Dolle M, Richardt A, Tiersch B, Koetz J, Lapp A, Hellweg T., J Colloid Interface Sci 325(1), 2008
PMID: 18571191
T, 2008
M, Anal Chem 68(), 1996
C, Anal Chem 69(), 1997
Determination of trace amounts of chemical warfare agent degradation products in decontamination solutions with NMR spectroscopy.
Koskela H, Rapinoja ML, Kuitunen ML, Vanninen P., Anal. Chem. 79(23), 2007
PMID: 17973498
Koskela H, Rapinoja ML, Kuitunen ML, Vanninen P., Anal. Chem. 79(23), 2007
PMID: 17973498
Bacterial detoxification of organophosphate nerve agents.
Raushel FM., Curr. Opin. Microbiol. 5(3), 2002
PMID: 12057683
Raushel FM., Curr. Opin. Microbiol. 5(3), 2002
PMID: 12057683
TC, Chem Biol Interact 119–120(), 1999
Stoichiometric and catalytic scavengers as protection against nerve agent toxicity: a mini review.
Lenz DE, Yeung D, Smith JR, Sweeney RE, Lumley LA, Cerasoli DM., Toxicology 233(1-3), 2006
PMID: 17188793
Lenz DE, Yeung D, Smith JR, Sweeney RE, Lumley LA, Cerasoli DM., Toxicology 233(1-3), 2006
PMID: 17188793
Deutsche, 1991
H, GIT Fachz Lab 35(), 1991
Quantitative 1H NMR with external standards: use in preparation of calibration solutions for algal toxins and other natural products.
Burton IW, Quilliam MA, Walter JA., Anal. Chem. 77(10), 2005
PMID: 15889900
Burton IW, Quilliam MA, Walter JA., Anal. Chem. 77(10), 2005
PMID: 15889900
LD, 2000
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 19943158
PubMed | Europe PMC
Suchen in