Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with H-1-P-31 HSQC NMR spectroscopy

Gaeb J, Melzer M, Kehe K, Wellert S, Hellweg T, Blum M-M (2010)
Analytical and Bioanalytical Chemistry 396(3): 1213-1221.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ;
Abstract / Bemerkung
The enzyme diisopropyl fluorophosphatase (DFPase, EC 3.1.8.2) from the squid Loligo vulgaris effectively catalyzes the hydrolysis of diisopropyl fluorophosphate (DFP) and a number of organophosphorus nerve agents, including sarin, soman, cyclosarin, and tabun. Until now, determination of kinetic data has been achieved by use of techniques such as pH-stat titration, ion-selective electrodes, and a recently introduced method based on in situ Fourier-transform infrared (FTIR) spectroscopy. We report the use of 1D H-1-P-31 HSQC NMR spectroscopy as a new method for real-time quantification of the hydrolysis of toxic organophosphonates by DFPase. The method is demonstrated for the agents sarin (GB), soman (GD), and cyclosarin (GD) but can also be used for V-type nerve agents, for example VX. Besides buffered aqueous solutions the method was used to determine enzymatic activities in a biodiesel-based bicontinuous microemulsion that serves as an example of complex decontamination media, for which other established techniques often fail. The method is non-invasive and requires only limited manual handling of small volumes of liquid (700 mu L), which adds to work safety when handling highly toxic organophosphorus compounds. Limits of detection are slightly below 100 mu mol L-1 on a 400 MHz spectrometer with 16 FIDs added for a single time frame. The method is not restricted to DFPase but can be used with other phosphotriesterases, for example paraxonase (PON), and even reactive chemicals, for example oximes and other nucleophiles, as long as the reaction components are compatible with the NMR experiment.
Erscheinungsjahr
Zeitschriftentitel
Analytical and Bioanalytical Chemistry
Band
396
Ausgabe
3
Seite(n)
1213-1221
ISSN
eISSN
PUB-ID

Zitieren

Gaeb J, Melzer M, Kehe K, Wellert S, Hellweg T, Blum M-M. Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with H-1-P-31 HSQC NMR spectroscopy. Analytical and Bioanalytical Chemistry. 2010;396(3):1213-1221.
Gaeb, J., Melzer, M., Kehe, K., Wellert, S., Hellweg, T., & Blum, M. - M. (2010). Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with H-1-P-31 HSQC NMR spectroscopy. Analytical and Bioanalytical Chemistry, 396(3), 1213-1221. doi:10.1007/s00216-009-3299-2
Gaeb, J., Melzer, M., Kehe, K., Wellert, S., Hellweg, T., and Blum, M. - M. (2010). Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with H-1-P-31 HSQC NMR spectroscopy. Analytical and Bioanalytical Chemistry 396, 1213-1221.
Gaeb, J., et al., 2010. Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with H-1-P-31 HSQC NMR spectroscopy. Analytical and Bioanalytical Chemistry, 396(3), p 1213-1221.
J. Gaeb, et al., “Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with H-1-P-31 HSQC NMR spectroscopy”, Analytical and Bioanalytical Chemistry, vol. 396, 2010, pp. 1213-1221.
Gaeb, J., Melzer, M., Kehe, K., Wellert, S., Hellweg, T., Blum, M.-M.: Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with H-1-P-31 HSQC NMR spectroscopy. Analytical and Bioanalytical Chemistry. 396, 1213-1221 (2010).
Gaeb, Juergen, Melzer, Marco, Kehe, Kai, Wellert, Stefan, Hellweg, Thomas, and Blum, Marc-Michael. “Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with H-1-P-31 HSQC NMR spectroscopy”. Analytical and Bioanalytical Chemistry 396.3 (2010): 1213-1221.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Extraction of model contaminants from solid surfaces by environmentally compatible microemulsions.
Vargas-Ruiz S, Schulreich C, Kostevic A, Tiersch B, Koetz J, Kakorin S, von Klitzing R, Jung M, Hellweg T, Wellert S., J Colloid Interface Sci 471(), 2016
PMID: 26994352
An enzyme containing microemulsion based on skin friendly oil and surfactant as decontamination medium for organo phosphates: phase behavior, structure, and enzyme activity.
Stehle R, Schulreich C, Wellert S, Gäb J, Blum MM, Kehe K, Richardt A, Lapp A, Hellweg T., J Colloid Interface Sci 413(), 2014
PMID: 24183440
The DFPase from Loligo vulgaris in sugar surfactant-based bicontinuous microemulsions: structure, dynamics, and enzyme activity.
Wellert S, Tiersch B, Koetz J, Richardt A, Lapp A, Holderer O, Gäb J, Blum MM, Schulreich C, Stehle R, Hellweg T., Eur Biophys J 40(6), 2011
PMID: 21416312
Destruction and detection of chemical warfare agents.
Kim K, Tsay OG, Atwood DA, Churchill DG., Chem Rev 111(9), 2011
PMID: 21667946
Dynamics of the interfacial film in bicontinuous microemulsions based on a partly ionic surfactant mixture: A neutron spin-echo study.
Wellert S, Altmann HJ, Richardt A, Lapp A, Falus P, Farago B, Hellweg T., Eur Phys J E Soft Matter 33(3), 2010
PMID: 21061040

26 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0
Crystal structure of diisopropylfluorophosphatase from Loligo vulgaris.
Scharff EI, Koepke J, Fritzsch G, Lucke C, Ruterjans H., Structure 9(6), 2001
PMID: 11435114
Binding of a designed substrate analogue to diisopropyl fluorophosphatase: implications for the phosphotriesterase mechanism.
Blum MM, Lohr F, Richardt A, Ruterjans H, Chen JC., J. Am. Chem. Soc. 128(39), 2006
PMID: 17002369

MM, Proc Natl Acad Sci USA 106(), 2009
Purification of a DFP-hydrolyzing enzyme from squid head ganglion.
Hoskin FC, Long RJ., Arch. Biochem. Biophys. 150(2), 1972
PMID: 4339736
Enhanced stereoselective hydrolysis of toxic organophosphates by directly evolved variants of mammalian serum paraoxonase.
Amitai G, Gaidukov L, Adani R, Yishay S, Yacov G, Kushnir M, Teitlboim S, Lindenbaum M, Bel P, Khersonsky O, Tawfik DS, Meshulam H., FEBS J. 273(9), 2006
PMID: 16640555
Analogues with fluorescent leaving groups for screening and selection of enzymes that efficiently hydrolyze organophosphorus nerve agents.
Briseno-Roa L, Hill J, Notman S, Sellers D, Smith AP, Timperley CM, Wetherell J, Williams NH, Williams GR, Fersht AR, Griffiths AD., J. Med. Chem. 49(1), 2006
PMID: 16392809
Structure of biodiesel based bicontinuous microemulsions for environmentally compatible decontamination: A small angle neutron scattering and freeze fracture electron microscopy study.
Wellert S, Karg M, Imhof H, Steppin A, Altmann HJ, Dolle M, Richardt A, Tiersch B, Koetz J, Lapp A, Hellweg T., J Colloid Interface Sci 325(1), 2008
PMID: 18571191

T, 2008

M, Anal Chem 68(), 1996

C, Anal Chem 69(), 1997
Bacterial detoxification of organophosphate nerve agents.
Raushel FM., Curr. Opin. Microbiol. 5(3), 2002
PMID: 12057683

TC, Chem Biol Interact 119–120(), 1999
Stoichiometric and catalytic scavengers as protection against nerve agent toxicity: a mini review.
Lenz DE, Yeung D, Smith JR, Sweeney RE, Lumley LA, Cerasoli DM., Toxicology 233(1-3), 2006
PMID: 17188793

Deutsche, 1991

H, GIT Fachz Lab 35(), 1991

LD, 2000

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 19943158
PubMed | Europe PMC

Suchen in

Google Scholar