Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation

Pusch R, von der Emde G, Hollmann M, Bacelo J, Nobel S, Grant K, Engelmann J (2008)
J Exp Biol 211(6): 921-934.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Pusch, R.; von der Emde , G.; Hollmann, M.; Bacelo, J.; Nobel, S.; Grant, K.; Engelmann, JacobUniBi
Abstract / Bemerkung
Weakly electric fish generate electric fields with an electric organ and perceive them with cutaneous electroreceptors. During active electrolocation, nearby objects are detected by the distortions they cause in the electric field. The electrical properties of objects, their form and their distance, can be analysed and distinguished. Here we focus on Gnathonemus petersii (Gunther 1862), an African fish of the family Mormyridae with a characteristic chin appendix, the Schnauzenorgan. Behavioural and anatomical results suggest that the mobile Schnauzenorgan and the nasal region serve special functions in electroreception, and can therefore be considered as electric foveae. We investigated passive pre-receptor mechanisms that shape and enhance the signal carrier. These mechanisms allow the fish to focus the electric field at the tip of its Schnauzenorgan where the density of electroreceptors is highest (tip-effect). Currents are funnelled by the open mouth (funnelling-effect), which leads to a homogenous voltage distribution in the nasal region. Field vectors at the trunk, the nasal region and the Schnauzenorgan are collimated but differ in the angle at which they are directed onto the sensory surface. To investigate the role of those pre-receptor effects on electrolocation, we recorded electric images of objects at the foveal regions. Furthermore, we used a behavioural response (novelty response) to assess the sensitivity of different skin areas to electrolocation stimuli and determined the receptor densities of these regions. Our results imply that both regions - the Schnauzenorgan and the nasal region - can be termed electric fovea but they serve separate functions during active electrolocation.
Stichworte
Animal/physiology Electric Fish/anatomy & histology/*physiology Electrophysiology Orientation/physiology Perception/physiology Sense Organs/anatomy & histology/physiology Signal Transduction; histology/*physiology Electric Organ/anatomy & Animal Communication Animals Behavior
Erscheinungsjahr
2008
Zeitschriftentitel
J Exp Biol
Band
211
Ausgabe
6
Seite(n)
921-934
ISSN
0022-0949
eISSN
1477-9145
Page URI
https://pub.uni-bielefeld.de/record/1998978

Zitieren

Pusch R, von der Emde G, Hollmann M, et al. Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation. J Exp Biol. 2008;211(6):921-934.
Pusch, R., von der Emde, G., Hollmann, M., Bacelo, J., Nobel, S., Grant, K., & Engelmann, J. (2008). Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation. J Exp Biol, 211(6), 921-934. doi:10.1242/jeb.014175
Pusch, R., von der Emde, G., Hollmann, M., Bacelo, J., Nobel, S., Grant, K., and Engelmann, J. (2008). Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation. J Exp Biol 211, 921-934.
Pusch, R., et al., 2008. Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation. J Exp Biol, 211(6), p 921-934.
R. Pusch, et al., “Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation”, J Exp Biol, vol. 211, 2008, pp. 921-934.
Pusch, R., von der Emde, G., Hollmann, M., Bacelo, J., Nobel, S., Grant, K., Engelmann, J.: Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation. J Exp Biol. 211, 921-934 (2008).
Pusch, R., von der Emde, G., Hollmann, M., Bacelo, J., Nobel, S., Grant, K., and Engelmann, Jacob. “Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation”. J Exp Biol 211.6 (2008): 921-934.

24 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Environmental acoustic cues guide the biosonar attention of a highly specialised echolocator.
Lattenkamp EZ, Kaiser S, Kaučič R, Großmann M, Koselj K, Goerlitz HR., J Exp Biol 221(pt 8), 2018
PMID: 29540459
The Mormyrid Optic Tectum Is a Topographic Interface for Active Electrolocation and Visual Sensing.
Zeymer M, von der Emde G, Wullimann MF., Front Neuroanat 12(), 2018
PMID: 30327593
Sensory Flow as a Basis for a Novel Distance Cue in Freely Behaving Electric Fish.
Hofmann V, Sanguinetti-Scheck JI, Gómez-Sena L, Engelmann J., J Neurosci 37(2), 2017
PMID: 28077710
Long-term behavioral tracking of freely swimming weakly electric fish.
Jun JJ, Longtin A, Maler L., J Vis Exp (85), 2014
PMID: 24637642
Motor patterns during active electrosensory acquisition.
Hofmann V, Geurten BR, Sanguinetti-Scheck JI, Gómez-Sena L, Engelmann J., Front Behav Neurosci 8(), 2014
PMID: 24904337
Electric imaging through evolution, a modeling study of commonalities and differences.
Pedraja F, Aguilera P, Caputi AA, Budelli R., PLoS Comput Biol 10(7), 2014
PMID: 25010765
Generalization of the dynamic clamp concept in neurophysiology and behavior.
Chamorro P, Muñiz C, Levi R, Arroyo D, Rodríguez FB, Varona P., PLoS One 7(7), 2012
PMID: 22829895
Mind the gap: the minimal detectable separation distance between two objects during active electrolocation.
Fechler K, Holtkamp D, Neusel G, Sanguinetti-Scheck JI, Budelli R, von der Emde G., J Fish Biol 81(7), 2012
PMID: 23252738
Genes, hormones, and circuits: an integrative approach to study the evolution of social behavior.
O'Connell LA, Hofmann HA., Front Neuroendocrinol 32(3), 2011
PMID: 21163292
Active electric imaging: body-object interplay and object's "electric texture".
Caputi AA, Aguilera PA, Pereira AC., PLoS One 6(8), 2011
PMID: 21876730
Imaging in electrosensory systems.
Pereira AC, Caputi AA., Interdiscip Sci 2(4), 2010
PMID: 21153776
The Schnauzenorgan-response of Gnathonemus petersii.
Engelmann J, Nöbel S, Röver T, Emde GV., Front Zool 6(), 2009
PMID: 19772622
The predictability of evolution: glimpses into a post-Darwinian world.
Conway Morris S., Naturwissenschaften 96(11), 2009
PMID: 19784612
Active sensing: Pre-receptor mechanisms and behavior in electric fish.
Engelmann J, Pusch R, von der Emde G., Commun Integr Biol 1(1), 2008
PMID: 19704784
Electric imaging through active electrolocation: implication for the analysis of complex scenes.
Engelmann J, Bacelo J, Metzen M, Pusch R, Bouton B, Migliaro A, Caputi A, Budelli R, Grant K, von der Emde G., Biol Cybern 98(6), 2008
PMID: 18491164
Active electrolocation in Gnathonemus petersii: behaviour, sensory performance, and receptor systems.
von der Emde G, Amey M, Engelmann J, Fetz S, Folde C, Hollmann M, Metzen M, Pusch R., J Physiol Paris 102(4-6), 2008
PMID: 18992334
Active electroreception in Gymnotus omari: imaging, object discrimination, and early processing of actively generated signals.
Caputi AA, Castelló ME, Aguilera PA, Pereira C, Nogueira J, Rodríguez-Cattaneo A, Lezcano C., J Physiol Paris 102(4-6), 2008
PMID: 18992336
Receptive field properties of neurons in the electrosensory lateral line lobe of the weakly electric fish, Gnathonemus petersii.
Metzen MG, Engelmann J, Bacelo J, Grant K, von der Emde G., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194(12), 2008
PMID: 18855000
Functional foveae in an electrosensory system.
Bacelo J, Engelmann J, Hollmann M, von der Emde G, Grant K., J Comp Neurol 511(3), 2008
PMID: 18803238

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 18310118
PubMed | Europe PMC

Suchen in

Google Scholar