Object localization through the lateral line system of fish: theory and experiment

Goulet J, Engelmann J, Chagnaud BP, Franosch JM, Suttner MD, van Hemmen JL (2008)
J Comp Physiol A: Neuroethol Sens Neural Behav Physiol 194(1): 1-17.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Goulet, J.; Engelmann, JacobUniBi ; Chagnaud, B. P.; Franosch, J. M.; Suttner, M. D.; van Hemmen, J. L.
Abstract / Bemerkung
Fish acquire information about their aquatic environment by means of their mechanosensory lateral-line system. This system consists of superficial and canal neuromasts that sense perturbations in the water surrounding them. Based on a hydrodynamic model presented here, we propose a mechanism through which fish can localize the source of these perturbations. In doing so we include the curvature of the fish body, a realistic lateral line canal inter-pore distance for the lateral-line canals, and the surface boundary layer. Using our model to explore receptor behavior based on experimental data of responses to dipole stimuli we suggest that superficial and canal neuromasts employ the same mechanism, hence provide the same type of input to the central nervous system. The analytical predictions agree well with spiking responses recorded experimentally from primary lateral-line nerve fibers. From this, and taking into account the central organization of the lateral-line system, we present a simple biophysical model for determining the distance to a source.
Stichworte
Biological Sensory Receptor Cells/*physiology Space Perception/*physiology Water Movements; Algorithms Animals Computer Simulation Evoked Potentials/*physiology Fishes/*physiology Lateral Line System/innervation/*physiology *Models
Erscheinungsjahr
2008
Zeitschriftentitel
J Comp Physiol A: Neuroethol Sens Neural Behav Physiol
Band
194
Ausgabe
1
Seite(n)
1-17
ISSN
0340-7594
eISSN
1432-1351
Page URI
https://pub.uni-bielefeld.de/record/1998965

Zitieren

Goulet J, Engelmann J, Chagnaud BP, Franosch JM, Suttner MD, van Hemmen JL. Object localization through the lateral line system of fish: theory and experiment. J Comp Physiol A: Neuroethol Sens Neural Behav Physiol. 2008;194(1):1-17.
Goulet, J., Engelmann, J., Chagnaud, B. P., Franosch, J. M., Suttner, M. D., & van Hemmen, J. L. (2008). Object localization through the lateral line system of fish: theory and experiment. J Comp Physiol A: Neuroethol Sens Neural Behav Physiol, 194(1), 1-17. https://doi.org/10.1007/s00359-007-0275-1
Goulet, J., Engelmann, Jacob, Chagnaud, B. P., Franosch, J. M., Suttner, M. D., and van Hemmen, J. L. 2008. “Object localization through the lateral line system of fish: theory and experiment”. J Comp Physiol A: Neuroethol Sens Neural Behav Physiol 194 (1): 1-17.
Goulet, J., Engelmann, J., Chagnaud, B. P., Franosch, J. M., Suttner, M. D., and van Hemmen, J. L. (2008). Object localization through the lateral line system of fish: theory and experiment. J Comp Physiol A: Neuroethol Sens Neural Behav Physiol 194, 1-17.
Goulet, J., et al., 2008. Object localization through the lateral line system of fish: theory and experiment. J Comp Physiol A: Neuroethol Sens Neural Behav Physiol, 194(1), p 1-17.
J. Goulet, et al., “Object localization through the lateral line system of fish: theory and experiment”, J Comp Physiol A: Neuroethol Sens Neural Behav Physiol, vol. 194, 2008, pp. 1-17.
Goulet, J., Engelmann, J., Chagnaud, B.P., Franosch, J.M., Suttner, M.D., van Hemmen, J.L.: Object localization through the lateral line system of fish: theory and experiment. J Comp Physiol A: Neuroethol Sens Neural Behav Physiol. 194, 1-17 (2008).
Goulet, J., Engelmann, Jacob, Chagnaud, B. P., Franosch, J. M., Suttner, M. D., and van Hemmen, J. L. “Object localization through the lateral line system of fish: theory and experiment”. J Comp Physiol A: Neuroethol Sens Neural Behav Physiol 194.1 (2008): 1-17.

18 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Directional Hydrodynamic Sensing by Free-Swimming Organisms.
Takagi D, Hartline DK., Bull Math Biol 80(1), 2018
PMID: 29192370
Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.
Asadnia M, Kottapalli AG, Miao J, Warkiani ME, Triantafyllou MS., J R Soc Interface 12(111), 2015
PMID: 26423435
Axon-Schwann cell interactions during peripheral nerve regeneration in zebrafish larvae.
Ceci ML, Mardones-Krsulovic C, Sánchez M, Valdivia LE, Allende ML., Neural Dev 9(), 2014
PMID: 25326036
Airflow elicits a spider's jump towards airborne prey. II. Flow characteristics guiding behaviour.
Klopsch C, Kuhlmann HC, Barth FG., J R Soc Interface 10(82), 2013
PMID: 23427092
Developmental and architectural principles of the lateral-line neural map.
Pujol-Martí J, López-Schier H., Front Neural Circuits 7(), 2013
PMID: 23532704
Imaging dipole flow sources using an artificial lateral-line system made of biomimetic hair flow sensors.
Dagamseh A, Wiegerink R, Lammerink T, Krijnen G., J R Soc Interface 10(83), 2013
PMID: 23594816
Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus.
Goulet J, van Hemmen JL, Jung SN, Chagnaud BP, Scholze B, Engelmann J., J Neurophysiol 107(10), 2012
PMID: 22378175
Graph theoretical model of a sensorimotor connectome in zebrafish.
Stobb M, Peterson JM, Mazzag B, Gahtan E., PLoS One 7(5), 2012
PMID: 22624008
Toral lateral line units of goldfish, Carassius auratus, are sensitive to the position and vibration direction of a vibrating sphere.
Meyer G, Klein A, Mogdans J, Bleckmann H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198(9), 2012
PMID: 22669431
Responses of brainstem lateral line units to different stimulus source locations and vibration directions.
Künzel S, Bleckmann H, Mogdans J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197(7), 2011
PMID: 21479569
Two-dimensional receptive fields of midbrain lateral line units in the goldfish, Carassius auratus.
Voges K, Bleckmann H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197(8), 2011
PMID: 21505876
Hydrodynamic object recognition: when multipoles count.
Sichert AB, Bamler R, van Hemmen JL., Phys Rev Lett 102(5), 2009
PMID: 19257562
Lateral line system of fish.
Bleckmann H, Zelick R., Integr Zool 4(1), 2009
PMID: 21392273
Wake tracking and the detection of vortex rings by the canal lateral line of fish.
Franosch JM, Hagedorn HJ, Goulet J, Engelmann J, van Hemmen JL., Phys Rev Lett 103(7), 2009
PMID: 19792690

56 References

Daten bereitgestellt von Europe PubMed Central.


D, 1990

D, Proc Natl Acad Sci USA 96(), 1999

E, 1981

J, 2000

H, 1994
Neural responses of goldfish lateral line afferents to vortex motions.
Chagnaud BP, Bleckmann H, Engelmann J., J. Exp. Biol. 209(Pt 2), 2006
PMID: 16391355
Dipole source localization by mottled sculpin. I. Approach strategies.
Coombs S, Conley RA., J. Comp. Physiol. A 180(4), 1997
PMID: 9106998

AUTHOR UNKNOWN, 0
Modeling and measuring lateral line excitation patterns to changing dipole source locations.
Coombs S, Hastings M, Finneran J., J. Comp. Physiol. A 178(3), 1996
PMID: 8583423
Transformation of peripheral inputs by the first-order lateral line brainstem nucleus.
Coombs S, Mogdans J, Halstead M, Montgomery J., J. Comp. Physiol. A 182(5), 1998
PMID: 9579053

S, Phil Trans R Soc Lond B 355(), 2000
The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts.
Coombs S, Braun CB, Donovan B., J. Exp. Biol. 204(Pt 2), 2001
PMID: 11136619
Source location encoding in the fish lateral line canal.
Curcic-Blake B, van Netten SM., J. Exp. Biol. 209(Pt 8), 2006
PMID: 16574811
The rigidity of fish and patterns of lateral line stimulation.
Denton EJ, Gray JA., Nature 297(5868), 1982
PMID: 7088154
The functioning and significance of the lateral-line organs.
DIJKGRAAF S., Biol Rev Camb Philos Soc 38(), 1963
PMID: 14027866

J, J Comp Physiol A 188(), 2002

J-MP, Phys Rev Lett 91(), 2003

J, J Fluid Mech 67(), 1975

J, J Neurophysiol 32(), 1969

R, J Fluid Mech 28(), 1967

GG, J Acoust Soc Am 34(), 1962

ES, 1989

ES, Biol Cybern 66(), 1992

ES, Biol Cybern 66(), 1992

ES, Biol Cybern 69(), 1993

J, 2004

J, Copeia 1998(), 1998

J, Environ Biol Fish 29(), 1990

W, Copeia 1992(), 1992

AJ, 1988

AUTHOR UNKNOWN, 0

H, 1932
The use of image blur as a depth cue.
Mather G., Perception 26(9), 1997
PMID: 9509149

J, Zoology 104(), 2001

RP, Vis Res 34(), 1994
Blur and contrast as pictorial depth cues.
O'Shea RP, Govan DG, Sekuler R., Perception 26(5), 1997
PMID: 9488884

C, 1997

AUTHOR UNKNOWN, 0

O, 1981

H, 2003

AUTHOR UNKNOWN, 0

E, Z vergl Physiol 53(), 1966

IM, Phys Today 55(11), 2002
The forces exerted by aquatic suction feeders on their prey.
Wainwright PC, Day SW., J R Soc Interface 4(14), 2007
PMID: 17251163
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18060550
PubMed | Europe PMC

Suchen in

Google Scholar