Wake tracking and the detection of vortex rings by the canal lateral line of fish

Franosch JM, Hagedorn HJ, Goulet J, Engelmann J, van Hemmen JL (2009)
Phys Rev Lett 103(7): 078102.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Franosch, J. M.; Hagedorn, H. J.; Goulet, J.; Engelmann, JacobUniBi ; van Hemmen, J. L.
Abstract / Bemerkung
Research on the lateral line of fish has mainly focused on the detection of oscillating objects. Yet many fish are able to track vortex wakes that arise from other fish. It is not yet known what the sensory input from a wake looks like and how fish can extract relevant information from it. We present a mathematical model to determine how vortices stimulate the canal lateral line and verify it by neuronal recordings. We also show how the information about the orientation of a vortex ring is captured by the lateral-line sensors so as to enable fish to follow a vortex street.
Erscheinungsjahr
2009
Zeitschriftentitel
Phys Rev Lett
Band
103
Ausgabe
7
Seite(n)
078102
ISSN
0031-9007
eISSN
1079-7114
Page URI
https://pub.uni-bielefeld.de/record/1998959

Zitieren

Franosch JM, Hagedorn HJ, Goulet J, Engelmann J, van Hemmen JL. Wake tracking and the detection of vortex rings by the canal lateral line of fish. Phys Rev Lett. 2009;103(7):078102.
Franosch, J. M., Hagedorn, H. J., Goulet, J., Engelmann, J., & van Hemmen, J. L. (2009). Wake tracking and the detection of vortex rings by the canal lateral line of fish. Phys Rev Lett, 103(7), 078102. https://doi.org/10.1103/PhysRevLett.103.078102
Franosch, J. M., Hagedorn, H. J., Goulet, J., Engelmann, Jacob, and van Hemmen, J. L. 2009. “Wake tracking and the detection of vortex rings by the canal lateral line of fish”. Phys Rev Lett 103 (7): 078102.
Franosch, J. M., Hagedorn, H. J., Goulet, J., Engelmann, J., and van Hemmen, J. L. (2009). Wake tracking and the detection of vortex rings by the canal lateral line of fish. Phys Rev Lett 103, 078102.
Franosch, J.M., et al., 2009. Wake tracking and the detection of vortex rings by the canal lateral line of fish. Phys Rev Lett, 103(7), p 078102.
J.M. Franosch, et al., “Wake tracking and the detection of vortex rings by the canal lateral line of fish”, Phys Rev Lett, vol. 103, 2009, pp. 078102.
Franosch, J.M., Hagedorn, H.J., Goulet, J., Engelmann, J., van Hemmen, J.L.: Wake tracking and the detection of vortex rings by the canal lateral line of fish. Phys Rev Lett. 103, 078102 (2009).
Franosch, J. M., Hagedorn, H. J., Goulet, J., Engelmann, Jacob, and van Hemmen, J. L. “Wake tracking and the detection of vortex rings by the canal lateral line of fish”. Phys Rev Lett 103.7 (2009): 078102.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Head width influences flow sensing by the lateral line canal system in fishes.
Yanagitsuru YR, Akanyeti O, Liao JC., J Exp Biol 221(pt 21), 2018
PMID: 30194249
Artificial lateral line based local sensing between two adjacent robotic fish.
Zheng X, Wang C, Fan R, Xie G., Bioinspir Biomim 13(1), 2017
PMID: 28949301
A fish perspective: detecting flow features while moving using an artificial lateral line in steady and unsteady flow.
Chambers LD, Akanyeti O, Venturelli R, Ježov J, Brown J, Kruusmaa M, Fiorini P, Megill WM., J R Soc Interface 11(99), 2014
PMID: 25079867
Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus.
Goulet J, van Hemmen JL, Jung SN, Chagnaud BP, Scholze B, Engelmann J., J Neurophysiol 107(10), 2012
PMID: 22378175

23 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 1985

AUTHOR UNKNOWN, 2003

AUTHOR UNKNOWN, 1988

AUTHOR UNKNOWN, j exp biol 10(), 1933

AUTHOR UNKNOWN, 1932

AUTHOR UNKNOWN, 1988

AUTHOR UNKNOWN, biol cybern 69(), 1993
Tracking wakes: the nocturnal predatory strategy of piscivorous catfish.
Pohlmann K, Grasso FW, Breithaupt T., Proc. Natl. Acad. Sci. U.S.A. 98(13), 2001
PMID: 11390962
Lateral line reception in still- and running water.
Engelmann J, Hanke W, Bleckmann H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(7), 2002
PMID: 12209340
Modeling and measuring lateral line excitation patterns to changing dipole source locations.
Coombs S, Hastings M, Finneran J., J. Comp. Physiol. A 178(3), 1996
PMID: 8583423
Neural responses of goldfish lateral line afferents to vortex motions.
Chagnaud BP, Bleckmann H, Engelmann J., J. Exp. Biol. 209(Pt 2), 2006
PMID: 16391355
Experimental Hydrodynamics of Fish Locomotion: Functional Insights from Wake Visualization
Drucker, Integrative and Comparative Biology 42(2), 2002
Axially symmetric potential flow around a slender body
Handelsman, Journal of Fluid Mechanics 28(1), 1967
Uniform asymptotic solutions for potential flow about a slender body of revolution
Geer, Journal of Fluid Mechanics 67(4), 1975
Source location encoding in the fish lateral line canal.
Curcic-Blake B, van Netten SM., J. Exp. Biol. 209(Pt 8), 2006
PMID: 16574811
Estimates of Pressure Differences across the Head of a Swimming Clupeid Fish
Lighthill, Philosophical Transactions of The Royal Society B Biological Sciences 341(1296), 1993
Karman vortex street detection by the lateral line.
Chagnaud BP, Bleckmann H, Hofmann MH., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 193(7), 2007
PMID: 17503054
Object localization through the lateral line system of fish: theory and experiment.
Goulet J, Engelmann J, Chagnaud BP, Franosch JM, Suttner MD, van Hemmen JL., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194(1), 2007
PMID: 18060550
Hydrodynamic object recognition: when multipoles count.
Sichert AB, Bamler R, van Hemmen JL., Phys. Rev. Lett. 102(5), 2009
PMID: 19257562
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19792690
PubMed | Europe PMC

Suchen in

Google Scholar