The Schnauzenorgan-response of Gnathonemus petersii

Engelmann J, Nobel S, Rover T, von der Emde G (2009)
Front Zool 6(1): 21.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Engelmann, JacobUniBi ; Nobel, S.; Rover, T.; von der Emde, G.
Abstract / Bemerkung
BACKGROUND: Electric fish navigate and explore their dark and turbid environment with a specialised electric sense. This active electrolocation involves the generation and perception of an electric signal and fish have proven to be useful model systems for the investigation of sensory-motor interactions. A well studied example is the elephantnose fish, Gnathonemus petersii, which has a characteristic and unique elongated chin covered with hundreds of electroreceptor organs. This highly moveable so-called Schnauzenorgan constitutes the main fovea of the active electrosensory system. Here we present first evidence for a sensory-motor loop relating active electrical sensing to active motor exploration of the environment. RESULTS: Both anatomical and behavioural evidence have shown that the moveable Schnauzenorgan is crucial for prey localization. Here we show for the first time that a motor response (Schnauzenorgan-response, SOR) can be elicited by novel electrosensory stimuli. The SOR could be triggered with highest reliability by novel electrical stimuli near the Schnauzenorgan and, to a lesser extend, near the head of the animal. The probability of evoking the response depended on the magnitude of the amplitude change of the electric input, with bigger changes eliciting SORs more reliably. Similarly, increasing the distance of the stimulus reduced the response. In this respect the SOR is comparable to the well described novelty response, a transient acceleration of the production rate of electric signals, although the latter occurs at a shorter delay and can also be evoked by non-electrical stimuli. CONCLUSION: Our experiments show a novel motor response that is mediated by the active electric sense of Gnathonemus petersii. This response will allow a detailed analysis of the neural system underlying direct interaction between sensory and motor processes in future experiments.
Erscheinungsjahr
2009
Zeitschriftentitel
Front Zool
Band
6
Ausgabe
1
Seite(n)
21
ISSN
1742-9994
Page URI
https://pub.uni-bielefeld.de/record/1998944

Zitieren

Engelmann J, Nobel S, Rover T, von der Emde G. The Schnauzenorgan-response of Gnathonemus petersii. Front Zool. 2009;6(1):21.
Engelmann, J., Nobel, S., Rover, T., & von der Emde, G. (2009). The Schnauzenorgan-response of Gnathonemus petersii. Front Zool, 6(1), 21. doi:10.1186/1742-9994-6-21
Engelmann, J., Nobel, S., Rover, T., and von der Emde, G. (2009). The Schnauzenorgan-response of Gnathonemus petersii. Front Zool 6, 21.
Engelmann, J., et al., 2009. The Schnauzenorgan-response of Gnathonemus petersii. Front Zool, 6(1), p 21.
J. Engelmann, et al., “The Schnauzenorgan-response of Gnathonemus petersii”, Front Zool, vol. 6, 2009, pp. 21.
Engelmann, J., Nobel, S., Rover, T., von der Emde, G.: The Schnauzenorgan-response of Gnathonemus petersii. Front Zool. 6, 21 (2009).
Engelmann, Jacob, Nobel, S., Rover, T., and von der Emde, G. “The Schnauzenorgan-response of Gnathonemus petersii”. Front Zool 6.1 (2009): 21.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Active electric imaging: body-object interplay and object's "electric texture".
Caputi AA, Aguilera PA, Pereira AC., PLoS One 6(8), 2011
PMID: 21876730
Imaging in electrosensory systems.
Pereira AC, Caputi AA., Interdiscip Sci 2(4), 2010
PMID: 21153776

51 References

Daten bereitgestellt von Europe PubMed Central.


Moller P., 1995
Capacitance detection in the wave-type electric fish during active electrolocation
Emde G., 1998
Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation.
Pusch R, von der Emde G, Hollmann M, Bacelo J, Nobel S, Grant K, Engelmann J., J. Exp. Biol. 211(Pt 6), 2008
PMID: 18310118
Effect of electric organ discharge on ampullary receptors in a mormyrid.
Bell CC, Russell CJ., Brain Res. 145(1), 1978
PMID: 638785
Le fonctionnement des électrorécepteurs étudié chez les Mormyres
Szabo T, Fessard A., 1965
A latency change mechanism involved in sensory coding of electric fish (mormyrids)
Szabo T, Hagiwara S., 1967
Temporal coding of species recognition signals in an electric fish.
Hopkins CD, Bass AH., Science 212(4490), 1981
PMID: 7209524
Active electrolocation helps Gnathonemus petersii to find its prey
Emde G., 1994
Non-visual environmental imaging and object detection through active electrolocation in weakly electric fish.
von der Emde G., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(6), 2006
PMID: 16645886
The mechanism of object location in and similar fish
Lissmann HW, Machin KE., 1958
Discrimination of objects through electrolocation in the weakly electric fish, Gnathonemus petersii
Emde G., 1990
Active electrolocation of polarized objects by a pulse-discharging electric fish, Gnathonemus petersii.
Avril A, Graff C., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 193(12), 2007
PMID: 17968555
The "novelty response" in an electric fish: response properties and habituation.
Post N, von der Emde G., Physiol. Behav. 68(1-2), 1999
PMID: 10627070
Spectral sensitivity of the weakly discharging electric fish using its electric organ discharges as the response measure
Ciali S, Gordon J, Moller P., 1997
Behavioral detection of electric signal waveform distortion in the weakly electric fish,
Emde G, Zelick R., 1995
Behavioral evidence of a latency code for stimulus intensity in mormyrid electric fish
Hall C, Bell C, Zelick R., 1995
Theoretical and experimental approaches to spatial aspects of electrolocation
Heiligenberg W., 1975
Neural correlates of novelty detection in pulse-type weakly electric fish.
Grau HJ, Bastian J., J. Comp. Physiol. A 159(2), 1986
PMID: 3761224
Behavioral responses of weakly electric fish to complex impedances
Meyer JH., 1982
Novelty response in the weakly electric fish Gymnotus carapo: seasonal differences and the participation of the telencephalon in its modulation.
Lopes Correa SA, Hoffmann A., Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 119(1), 1998
PMID: 11253791
The EOD sound response in weakly electric fish
Kramer B, Tautz J, Markl H., 1981
Electric organ discharge frequency modulation evoked by water vibration in
Barrio LC, Caputi A, Crispino L, Buno W., 1991
Multisensory enhancement of electromotor responses to a single moving object.
Pluta SR, Kawasaki M., J. Exp. Biol. 211(Pt 18), 2008
PMID: 18775929
Functional foveae in an electrosensory system.
Bacelo J, Engelmann J, Hollmann M, von der Emde G, Grant K., J. Comp. Neurol. 511(3), 2008
PMID: 18803238
Active electrolocation in Gnathonemus petersii: behaviour, sensory performance, and receptor systems.
von der Emde G, Amey M, Engelmann J, Fetz S, Folde C, Hollmann M, Metzen M, Pusch R., J. Physiol. Paris 102(4-6), 2008
PMID: 18992334
The Physiology of low-frequency electrosensory systems
Bodznick D, Montgomery JC., 2005
Electric organ discharge patterns during group hunting by a mormyrid fish.
Arnegard ME, Carlson BA., Proc. Biol. Sci. 272(1570), 2005
PMID: 16006329
Small circuits for large tasks: high-speed decision-making in archerfish.
Schlegel T, Schuster S., Science 319(5859), 2008
PMID: 18174445
The posterior lateral line lobe of a mormyrid fish--a Golgi study.
Maler L., J. Comp. Neurol. 152(3), 1973
PMID: 4130105
Die Beziehungen zwischen Elektrorezeptoren, elektrischen Organen, Seitenlinienorganen und Nervensystem bei den Mormyridae (Teleostei, Pisces)
Harder W., 1968
Die Faseranatomie des Mormyridengehirns
Stendell W., 1914
Die Schnauzenorgane der Mormyriden
Stendell W., 1916
Distribution, density and morphology of electroreceptor organs in mormyrid weakly electric fish: anatomical investigations of a receptor mosaic
Hollmann M, Engelmann J, Emde G., 2008
Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation.
Pusch R, von der Emde G, Hollmann M, Bacelo J, Nobel S, Grant K, Engelmann J., J. Exp. Biol. 211(Pt 6), 2008
PMID: 18310118
Electroreception and electrolocation in platypus.
Scheich H, Langner G, Tidemann C, Coles RB, Guppy A., Nature 319(6052), 1986
PMID: 3945317
Electroreception and the feeding behaviour of platypus (Ornithorhynchus anatinus: Monotremata: Mammalia)
Manger PR, Pettigrew JD., 1995
Electroreception in monotremes.
Pettigrew JD., J. Exp. Biol. 202(Pt 10), 1999
PMID: 10210685
Part 5 Central coordination and evolution of sensory inputs. 22 Paddlefish and platypus: parallel evolution of passive electroreception in a rostral bill organ
Pettigrew JD, Wilkens LA., 2003
Electrolocation and electrocommunication in pulse gymnotids: signal carriers, pre-receptor mechanisms and the electrosensory mosaic.
Caputi AA, Castello ME, Aguilera P, Trujillo-Cenoz O., J. Physiol. Paris 96(5-6), 2002
PMID: 14692497
Imaging of objects through active electrolocation in Gnathonemus petersii.
von der Emde G, Schwarz S., J. Physiol. Paris 96(5-6), 2002
PMID: 14692491
Temporal analysis of moving DC electric fields in aquatic media.
Hofmann MH, Wilkens LA., Phys Biol 2(1), 2005
PMID: 16204853
Active sensing: Pre-receptor mechanisms and behavior in electric fish.
Engelmann J, Pusch R, von der Emde G., Commun Integr Biol 1(1), 2008
PMID: 19704784
Physiology of the eyelid motor system.
Delgado-Garcia JM, Gruart A, Trigo JA., Ann. N. Y. Acad. Sci. 1004(), 2003
PMID: 14662442
Miscellaneous features of electroreceptors in Gnathonemus petersii (Günther, 1862) (Pisces, Teleostei, Mormyriformes)
Peters RC, Denizot JP., 2004

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 19772622
PubMed | Europe PMC

Suchen in

Google Scholar